
CHAPTER 14 A
P
P
L
I
C
A
T
I
O
N

A PPL ICAT ION DEPL OYM EN T
M ET H ODS

D
E
P
L
O
Y
M
E
N
T

M
E
T
H
O
D
S

his chapter discusses the possible methods in deploying an ArcMap™ based
application. When working in the VBA, Visual Basic for Applications, environment,
the programmer can deploy an application in the form of an ArcMap™ template (*.mxt)T

or an ArcMap™ document file, which references an ArcMap™ template. In this mode the source
for the application is packaged with the ArcMap™ template. To ensure that the source is not
modified or viewed, the programmer can password protect the ArcMap™ template. In the VB,
Visual Basic, environment, the programmer will create DLL(s) for the application.

From a performance point of view, creating DLL(s) for an application will provide slightly better
performance over creating an ArcMap™ project file, which references an ArcMap™ template.
The downside is that this process is much more involved than creating an ArcMap™ template.

14.1 Creating an ArcMap Template File

The steps presented below describe how the developer can create an ArcMap™ template file.
In the VBA environment, the developer works within an ArcMap™ document file. This
document file contains the VBA
code, forms, combo boxes, tools,
etc. which comprise the applica-
tion. Once the application has been
tested and is ready for deployment,
the developer should:

? 1 Open the ArcMap™
document file, which
is to be converted
into an ArcMap™
template file. Figure 14-1 Save As Dialog Box

14-2 Avenue Wraps

? 2 Click at the File menu and the Save As... sub-menu. The conventional file
browsing window of Figure 14-1 is displayed.

? 3 Scroll down in the "Save
as type:" combo box, and
click at the *.mxt option.

? 4 Click in the "File name:"
data field, and enter the
name of the template file to
be created. Click at the
Save button to create the
template file.

? 5 Click at the File menu and
then at the Exit sub menu
to exit ArcMap™ .

? 6 Invoke the ArcMap™ program. The "Start using ArcMap with" selection box of
Figure 14-2 is displayed.

Figure 14-2 ArcMap Initial Dialog Box

Figure 14-3 Visual Basic Editor Interface

Create the
A r c M a p ™
template file

Apply pass-
word protec-
tion to the tem-
plate file

Chapter 14 Application Deployment Methods 14-3

? 7 Click at the radio button to the left of the label "A new empty map", and then click
at the OK button to confirm the selection. This will close the dialog box.

? 8 Click at the File menu.

? 9 Click at the first name which appears under the
Export Map... sub menu. This should be the name of
the template file that was created above.

? 10 Click at the Tools menu and then at the Macros and
Visual Basic Editor sub-menus, see Figure 14-3.

? 11 Right-click on the TemplateProject name to invoke
the properties pop-up window, see Figure 14-4.

? 12 Click at the TemplateProject Properties... command. The Project Properties
window should appear, see Figure 14-5.

? 13 Click on the Protec-
tion tab.

? 14 Click on the square
to the left of the label
"Lock project for view-
ing".

? 15 Click in the "Pass-
word" data field, and
enter the password
that is to be used to
restrict access to the
customizations pro-
vided in the template.

? 16 Click in the "Confirm password" data field, and enter the same password to
confirm the password and then click at the OK button to complete the password
protection phase.

? 17 Click at the File menu and then the Close and Return to ArcMap sub-menu.

? 18 Click at the File menu and then the Save sub-menu.

? 19 Click at the File menu and then the Exit sub-menu.

Figure 14-4
Properties Pop-Up

Figure 14-5 Template Protection Dialog Box

The template
file has now
been applied
password pro-
tection and is
ready to be ref-
erenced by an
A r c M a p ™
document file.

Passwords are
case sensitive,
that is, there is
a difference
between upper
and lower case
characters.

14-4 Avenue Wraps

14.2 Creating an ArcMap Project File referencing an ArcMap
Template File

Once an ArcMap™ template file has been created, the developer has the option to either (a)
distribute the template file with instructions on how the template file can be referenced, or (b)
create an ArcMap™ document file which references the template file and then distribute both
the ArcMap™ document file and template file. Note that the template file must be included with
the document file. In using the second approach, the developer saves the end user the effort
of creating a document file, which references the template file. A document file which references
a template file will be considerably smaller in file size as compared to the template file size.

The developer when distributing the application will want to give consideration to setting up
a central distribution directory where the document and template files, along with any other data
that needs to be distributed, should reside. The developer can then instruct the end user that
the ArcMap™ document file can be initially opened from the central distribution directory, then
using the Save As... command, a new document file can be created, which the end user can use
to perform the necessary work.

? 1 Invoke the ArcMap™ program. The "Start using ArcMap with" selection box of
Figure 14-2 is displayed.

? 2 Click at the radio button, which appears, to the left of the label "An existing map"
of Figure 14-2, and then click at the OK button to confirm the selection. This will

Figure 14-6 Open An Existing Map Dialog Box

In distributing
an ArcMap™
document file,
consideration
should be
given to estab-
lishing a cen-
tral distribu-
tion directory
where all files
that are asso-
ciated with the
appl ica t ion
should reside.

Chapter 14 Application Deployment Methods 14-5

close the dialog box, and will display the conventional file browsing window,
similar to that of Figure 14-6

? 3 Navigate to the directory where the appropriate template file resides, Scroll down
in the "Files of type:" combo box, and click at the *.mxt option. The template file
should now appear.

? 4 Click at the name of the template file, in the file display area, and then click at the
Open button to open it.

The typical ArcMap™ interface window is displayed. At this point we have
created a new document file, which only has a reference to the template file. The
document file has not been assigned a name.

? 5 Click at the File menu and then the Save As... sub-menu. The conventional file
browsing window, similar to that of Figure 14-7 is now displayed.

? 6 Navigate to the directory where the document file is to be stored, click in the "File
name:" data field, and enter the desired document file name omitting any file name
extension.

? 7 Click at the Save button to create the document file.

? 8 Click at the File menu and then at the Exit sub menu to exit ArcMap™ .

Figure 14-7 Save As Dialog Box In distributing
an ArcMap™
document file,
which refer-
ences a tem-
plate file, the
template file
must be in-
cluded in the
distribution.

14-6 Avenue Wraps

The document file which has been created contains only a reference to the template file. The
end user can begin working with this document file, adding data if need be, utilizing the
customizations available in the template file. Since the template file is password protected, the
customizations are safe from tampering.

14.3 Creating an Active X DLL

14.3.1 General Commentary

In the Avenue development environment, the developer had the ability to create
extensions, which provided a means of distributing applications independent of
ArcView project files. In the VB, Visual Basic, environment the developer has the
ability to create Active X DLLs, which likewise, offers a means of distributing
applications independent of ArcMap document files.

To create an Active X DLL, the developer creates Class modules within a Visual Basic
workspace. A Visual Basic workspace is defined as a directory (folder) on disk where
the Visual Basic project file is stored. Depending upon the type of functionality to be
provided within the DLL, the structure of the Class modules will vary. For example, the
structure of a Class module for a tool is different than that of a Combo box (drop-down).
Depending upon the complexity of the DLL to be created, the Visual Basic project can
contain one or several Class modules. That is to say, if the DLL is to deliver a single
tool, the Visual Basic project file will contain a single Tool Class module. If the DLL
is to deliver a toolbar with two tools, the Visual Basic project file will contain a Toolbar
Class module, as well as, two Tool Class modules.

As stated in Section 1.3.1, prior to creating an Active X DLL, it is recommended that
the developer perform the writing and debugging of the application in the VBA
environment. Once the application is at a point for distribution, the Active X DLL(s)
can be created. The code modules created in the VBA environment can be referenced
in the Visual Basic workspace for incorporation into the Active X DLL. Note the use
of the word "referenced" in the preceding statement. When an existing code module
is added to a Visual Basic project, the actual source is not included in the Visual Basic
project. That is to say, a Visual Basic project file simply contains pointers (pathnames)
to the modules that comprise the project file. This is in stark difference to how the VBA
environment operates. That is, all forms, code modules, etc. which comprise an
application are stored within the ArcMap document file in which they were created.

Shown in Figure 14-8 is a possible directory structure for developing an ArcMap based
application. As can be seen, a top level directory is created for the application. Within
this directory, three sub-directories are created, Testing, VBAcode and DLL, although

It is suggested
that there
should be one
VB project file
for every Ac-
tive X DLL,
which is cre-
ated.

Chapter 14 Application Deployment Methods 14-7

Application

Testing VBAcode DLL

appl.mxd module1.bas Module1.cls
module2.bas Module2.cls

form1.frm form1.frm
form1.frx form1.frx

appl.vbp
appl.vbw
appl.dll
appl.exp
appl.lib

Figure 14-8 Sample Directory Structure for Creating Active X DLL

any naming convention can be used. These directories will contain certain information,
as described below, which will be established during the development cycle.

The Testing directory is to contain the ArcMap document file, appl.mxd, where the
application will be initially developed and debugged. As mentioned above, all of the
code modules, forms, etc. are stored within the document file, just like an ArcView 3.x
project file contained all of the dialogs and scripts that comprised an application.
Therefore, for safety reasons, it is suggested that the ExportVBAcode Avenue Wrap
be used to export the modules, forms, etc., within the ArcMap document file, into the
VBAcode folder. In so doing, should "tragedy" strike the ArcMap document file, all
would not be lost.

The VBAcode directory, as stated above, provides a repository for the code modules
forms, etc., external to the ArcMap document file. In addition to providing this service,
it is the code modules in this directory that will be added to the Visual Basic project
file, see Step 20, Section 14.3.2.

The DLL directory is to contain the Visual Basic project file, appl.vbp, which builds
the Active X DLL for the application. In addition, all of the Class modules and forms
comprising the Active X DLL will also be stored in this directory. Note that the forms
created, in the VBA environment within the ArcMap document file, will need to be
recreated in the VB environment. The code modules in the VBAcode directory will be
added to the Visual Basic project file. So that, the DLL directory will contain only those
modules specific to building the Active X DLL.

A suggested
d i r e c t o r y
structure for
developing an
A r c M a p ™
Active X DLL.

Since the code
modules are
stored exter-
nally from the
Visual Basic
project file, it is
possible to use
any text editor
to modify the
files. When
the Visual Ba-
sic project file
is reopened,
any modifica-
tions made to
the code mod-
ules will be vis-
ible.

14-8 Avenue Wraps

14.3.2 Creating a Toolbar DLL

This section provides information describing how a DLL can be created such that a
single toolbar with one or more tools on the toolbar is provided. Note that a tool is
different from a ComboBox, in that, there are different "events" and "properties" that
are associated with a tool and not with a ComboBox, although there are some
commonalities. Section 14.3.4 discusses how a ComboBox can be created.

? 1 Using Windows Explorer create the DLL directory (folder) as shown in
Figure 14-8.

? 2 Invoke Visual Basic Version 6.0.

? 3 Select the New tab,
followed by clicking
on the Active X DLL
icon and then select
the Open button, see
Figure 14-9.

? 4 At this point an empty
Class module will be
established. The de-
veloper can begin to
enter the appropriate
code for the type of
Class module to be
created.

In this discussion, we will insert code for a Toolbar. Shown in Figure 14-10
is "boiler-plate" or "stub" code for a Toolbar Class module. The developer
can paste this code into the Class module window and modify the code as
desired. Comments within the "stub" code describe what information is
specified in a particular procedure.

Once the code has been modified, using the Properties window for the Class
module set the Instancing and Name properties of the Class module, see
Figure 14-11. Note any appropriate name can be entered in the name property
data field. The Instancing property should be set to GlobalMultiUse.

Figure 14-9 VB 6.0 Splash Box

Establish the
Toolbar Class
Module. This
module con-
tains the code
which defines
what tools are
to appear on
the Toolbar.
Note, it is pos-
sible for a
toolbar to con-
tain Tool and
C o m b o B o x
controls. A
Toolbar does
not have to
contain only
one type of
control.

Chapter 14 Application Deployment Methods 14-9

'
' *
' * *
' * Name: ToolBar File Name: ToolBar.cls *
' * *
' *
' * *
' * PURPOSE: CLASS MODULE DEFINING THE TOOLBAR TO BE DISTRIBUTED *
' * IN THE FORM OF AN ACTIVE X DLL *
' * *
' * GIVEN: nothing *
' * *
' * RETURN: nothing *
' * *
' *
'
Implements IToolBarDef

Private Property Get IToolBarDef_ItemCount() As Long
'
' ---Define the number of items on the toolbar, in this case there
' ---will be two commands (tools) which will appear on the toolbar
 IToolBarDef_ItemCount = 2
'
End Property

Private Sub IToolBarDef_GetItemInfo(ByVal pos As Long, _
 ByVal itemDef As esriCore.IItemDef)
'
' ---Add the commands to the toolbar, noting that Project1 denotes
' ---the name of the VB project being worked on. A period is used
' ---to separate the VB project name from the name of the class
' ---module containing the command that is to appear on the toolbar
' ---The programmer can change the name of the VB project and
' ---command class module in the VB Properties window
 Select Case pos
 Case 0
 itemDef.ID = "Project1.Command1"
 Case 1
 itemDef.ID = "Project1.Command2"
 End Select
'
End Sub

Private Property Get IToolBarDef_Name() As String
'
 IToolBarDef_Name = "Custom Toolbar"
'
End Property

Private Property Get IToolBarDef_Caption() As String
'
' ---Define the name of the toolbar which will appear in the
' ---ArcMap Customize dialog box, the end user can toggle the
' ---display of the toolbar by clicking in the square to the
' ---left of this name
 IToolBarDef_Caption = "Custom Toolbar"
'
End Property

Figure 14-10 "Stub" code for a Toolbar Class Module

14-10 Avenue Wraps

Figure 14-11 Class Module Properties Window

? 5 At this point we need to create a Class module for every tool that is to be added
to the toolbar. The Project menu Add Class Module sub menu item can be
used to create a new Class module, see
Figure 14-12(a).

? 6 Select the New tab, followed by clicking on
the Class Module icon and then select the
Open button, see Figure 14-12(b). A new
empty Class module window will appear.

Insert code for a Tool. Shown in Figure 14-
13 is "boiler-plate" or "stub" code for a Tool
Class module. The developer can paste this
code into the Class module window and
modify the code as desired. Comments
within the "stub" code describe what infor-
mation is specified in a particular proce-
dure.

Figure 14-12(a)
Creating a New
Class Module

Establish the
Tool Class
Module. This
module con-
tains the code
which defines
how a tool op-
erates, such
as, the pop-up
help message,
the procedure
that gets ex-
ecuted when
the mouse
button is de-
pressed and so
forth.

Chapter 14 Application Deployment Methods 14-11

Figure 14-12(b)
Creating a New Class Module

Option Explicit
'
' *
' * *
' * Name: Command1 File Name: Command1.cls *
' * *
' *
' * *
' * PURPOSE: CLASS MODULE DEFINING A COMMAND WHICH WILL BE ADDED *
' * TO A TOOLBAR IN THE FORM OF A TOOL *
' * *
' * GIVEN: nothing *
' * *
' * RETURN: nothing *
' * *
' *
'
Private m_pApp As IApplication
Private m_pDoc As IMxDocument
Private m_pMap As IMap
Private m_pExt As IExtensionConfig
'
Implements ITool
Implements ICommand
'

Private Sub Class_Terminate()
'
' ---Clear member variables
 Set m_pMap = Nothing
 Set m_pDoc = Nothing
 Set m_pExt = Nothing
 Set m_pApp = Nothing
'
End Sub

Once the code has
been modified, using
the Properties win-
dow for the Class
module set the In-
stancing and Name
properties of the Class
module, see Figure 14-
11.

? 7 Repeat Steps 5 and 6
for every tool to ap-
pear on the toolbar.

Figure 14-13 "Stub" code for a Tool Class Module

At this point,
the Class mod-
ules for the
toolbar and the
tools to appear
on the toolbar
have been cre-
ated.

14-12 Avenue Wraps

Private Property Get ICommand_Enabled() As Boolean
'
' ---Command is enabled only if there is data in the map
 If m_pMap.LayerCount > 0 Then
 ICommand_Enabled = True
 Else
 ICommand_Enabled = False
 End If
'
End Property

Private Property Get ICommand_Checked() As Boolean
'
 ICommand_Checked = False
'
End Property

Private Property Get ICommand_Name() As String
'
' ---Set the internal name of this command. By convention, this
' ---name string contains the category and caption of the command
 ICommand_Name = "CEDRA_AVcad_Tools.Point01"
'
End Property

Private Property Get ICommand_Caption() As String
'
' ---Set the string that appears when the command is used as a
' ---menu item. This name appears in the Commands window on the
' ---right side of the Commands tab in the Customize dialog box
 ICommand_Caption = "Point01"
'
End Property

Private Property Get ICommand_Tooltip() As String
'
' ---Define the pop-up help
 ICommand_Tooltip = "Define points by picking"
'
End Property

Private Property Get ICommand_Message() As String
'
' ---Set the message string that appears in the status bar of the
' ---application when the mouse passes over the command
 ICommand_Message = "Make a pick"
'
End Property

Private Property Get ICommand_HelpFile() As String
'
'
End Property

Private Property Get ICommand_HelpContextID() As Long
'
'
End Property

Figure 14-13 "Stub" code for a Tool Class Module (continued)

Chapter 14 Application Deployment Methods 14-13

Private Property Get ICommand_Bitmap() As esriCore.OLE_HANDLE
'
' ---Get command bitmap from the image list on the form call Form1
 ICommand_Bitmap = Form1.ImageList1.ListImages(1).Picture
'
End Property

Private Property Get ICommand_Category() As String
'
' ---Set the category of this command. This determines where the
' ---command appears in the Commands panel of the Customize dialog
 ICommand_Category = "CEDRA_AVcad_Tools"
'
End Property

Private Sub ICommand_OnCreate(ByVal hook As Object)
'
' ---The hook argument is a pointer to Application object,
' ---establish a hook to the application
 Set m_pApp = hook
 Set m_pDoc = m_pApp.Document
 Set m_pMap = m_pDoc.FocusMap
'
' ---Transfer the IApplication object into global memory
 Set ugm_pApp = m_pApp
'
' ---Initialize the CEDRA Avenue Wraps global variables
 Call avInit(m_pApp)
'
End Sub

Private Sub ICommand_OnClick()
'
' ---Add code to do some action when the command is clicked
'
End Sub

Private Property Get ITool_Cursor() As esriCore.OLE_HANDLE
'
' ---Set the cursor of the command
'
End Property

Private Sub ITool_OnMouseDown(ByVal button As Long, _
 ByVal shift As Long, ByVal X As Long, ByVal Y As Long)
'
' ---Add code to do some action when a mouse button is pressed
'
End Sub

Private Sub ITool_OnMouseMove(ByVal button As Long, _
 ByVal shift As Long, ByVal X As Long, ByVal Y As Long)
'
' ---Add code to do some action when a mouse is moved
'
End Sub

Private Sub ITool_OnMouseUp(ByVal button As Long, _
 ByVal shift As Long, ByVal X As Long, ByVal Y As Long)
'

The OnMouse
events have as
one of their ar-
guments the
parameter but-
ton which re-
flects the
mouse button
that was used.
The values
that button can
be assigned in-
clude: 0 No
button, 1 Left
button is
pressed, 2
Right button is
pressed and 4
Middle button
is pressed.

Initializing the
A v e n u e
Wraps DLL,
avwraps.dll,
globals in a VB
project file.

14-14 Avenue Wraps

' ---Add code to do some action when a mouse button is released
'
End Sub

Private Sub ITool_OnDblClick()
'
' ---Add code to do some action on double-click
'
End Sub

Private Sub ITool_OnKeyDown(ByVal keyCode As Long, _
 ByVal shift As Long)
'
' ---Add code to do some action when a keyboard button is pressed
'
End Sub

Private Sub ITool_OnKeyUp(ByVal keyCode As Long, ByVal shift As Long)
'
' ---Add code to do some action when a keyboard button is released
'
End Sub

Private Function ITool_OnContextMenu(ByVal X As Long, _
 ByVal Y As Long) As Boolean
'
' ---Add code to show custom context menu when there is a
' ---right click
'
End Function

Private Sub ITool_Refresh(ByVal hDC As esriCore.OLE_HANDLE)
'
' ---Add code to do something when the screen display in the
' ---application is refreshed
'
End Sub

Private Function ITool_Deactivate() As Boolean
'
' ---Deactivate the tool. If ITool_Deactivate is not set to be
' ---true no other tool on the tool bar will be able to be selected
'
' ---Handle any errors that may occur
 On Error GoTo Errorhandler
'
 ITool_Deactivate = True
'
 Exit Function
'
' ---Handle any errors that were detected
Errorhandler:
'
' ---Display the detected error
 MsgBox "Error " & Err.Number & " - " & Err.Description & _
 Chr(13) & "Function: ITool_Deactivate"
'
End Function

Figure 14-13 "Stub" code for a Tool Class Module (continued)

Chapter 14 Application Deployment Methods 14-15

? 8 Move the cursor into a blank area within the toolbar display on the left side
of the VB 6.0 application window and right-click. A pop-up menu will appear,
see Figure 14-14(a). Click on the Components... menu item, which appears
in the pop-up menu
list.

? 9 Click on the square
to the left of the label
"Microsoft Win-
dows Common Con-
trols 6.0", see Figure
14-14(b).

? 10 Click at the OK but-
ton to load the addi-
tional controls. The
ImageList tool will be
one of the additional
tools added to the
project file.

Figure 14-14(a) Components "Pop-Up" Window Menu Display

Figure 14-14(b)
Available Components

Every tool on
the toolbar can
have an icon or
bitmap image
assigned to it.
To do so, addi-
tional com-
mands need to
be added to the
Visual Basic
project file. In
this case an
I m a g e L i s t
control can be
used to assign
a tool a specific
icon. The
I m a g e L i s t
control is avail-
able in the
M i c r o s o f t
W i n d o w s
Common Con-
trols compo-

14-16 Avenue Wraps

? 11 Select the Project
menu and Add Form
sub menu item.

? 12 Select the New tab,
followed by clicking
on the Form icon and
then select the Open
button, see Figure 14-
15.

? 13 Select the ImageList
tool and drag a rect-
angle within the form
to add an ImageList control to the form.

? 14 Right-click on the ImageList control that was just added and select the
Properties menu from the pop-up menu list as shown Figure 14-16.

Figure 14-15
Available Form Types

Figure 14-16 ImageList Control Pop-Up Menu Options

?

ImageList Tool

ComboBox Tool

?

Chapter 14 Application Deployment Methods 14-17

? 15 Select the Images tab,
followed by clicking on
the Insert Picture but-
ton, see Figure 14-17,
navigate to the directory
which contains the de-
sired bitmap (icon), which
is to be assigned to the
tool and then select the
Open button.

? 16 Repeat Step 15 for every
tool to appear on the toolbar. When all icons have been added, select the OK
button. The order in which the icons appear in Figure 14-17 correspond to
the order of the tools on the toolbar, left to right.

? 17 Select the Project menu and the Add Module sub menu item.

? 18 Select the New tab, followed by clicking on the Module icon and then select
the Open button, an empty module window should appear.

? 19 Enter the following statement in the empty window which was created by the
previous step.

Public ugm_pApp As IApplication

At this point a global variable called ugm_pApp is being established which
will be used to transfer the IApplication interface from the Tool Class module
to the rest of the code modules comprising the application. In the
ICommand_OnCreate procedure, the ugm_pApp object is established and
since is it declared as Public, it is available to all of the modules in the
application. Note that the ICommand_OnCreate procedure is also used to
initialize the Avenue Wraps global variables, see Figure 14-13.

In the VBA environment, the Application object is available and is typically
used to get access to the IApplication interface. In the VB environment, the
Application object is not available. To get around this, the OnCreate method
is employed to get a hook to the IApplication interface and the Public
ugm_pApp object used to pass the interface to the other modules in the
application.

Figure 14-17
Available Components

14-18 Avenue Wraps

? 20 Select the Project
menu and the Refer-
ences... sub menu
item.

? 21 Click on the squares
to the left of the labels
"ESRI ArcMap Ob-
ject Library" and
"ESRI Object Li-
brary" and then se-
lect the OK button,
see Figure 14-18.

? 22 Select the File menu and the Save Project As... sub menu item, navigate to
the directory created in
Step 1 and click the Save
button, see Figure 14-
19. The Save button will
need to be clicked for
every form, command
module, toolbar Class
module that was created,
as well as, for the VB
project file. As men-
tioned in Section 14.3.1
all forms, modules, etc.
are stored external to the VB project file, so that, when the project file is first
saved all of the forms, modules, etc. have to be given a name so that they can
be written to disk. After the initial saving, any modifications which may be
made can be saved with the Save Project sub menu item, without having to
specify a name for each of the forms, modules, etc.

? 23 Add any other modules, which may be needed by the application, with the
Project menu and Add Module sub menu item. These should be the modules
which reside in the VBAcode directory, described in Section 14.3.1.

? 24 Select the File menu and the Make x.dll sub menu item, where x is the name
of the VB project file, enter the name of the .dll file to be created and click

Figure 14-19
Save As Dialog Box

Figure 14-18
Available COM Components

Chapter 14 Application Deployment Methods 14-19

the OK button to create the Active X DLL, see Figure 14-20. Note that the
name of the .dll file does
not have to be the same
as the name of the VB
project file.

At this point, Visual
Basic will compile the
project checking that all
referenced procedures
have been found and if
any compilation errors
were detected. If an er-
ror is detected, the de-
veloper is informed accordingly. At this point, the error must be resolved prior
to continuing with the compilation. Once the error has been resolved, repeat
this step until all errors are eliminated. When no more errors are detected, the
Active X DLL file is established. At this point, the .dll file can be added within
ArcMap and its functionality made available to the end user.

14.3.3 Loading an Active X DLL within ArcMap

Once an Active X DLL has been created, it can be loaded within ArcMap and its
functionality employed. To accomplish this perform the following:

? 1 Invoke ArcMap, at which time the default splash box is displayed. Accept
the default selection
to create a new empty
map, and click at the
OK button.

? 2 Click at the Tools
menu and then at the
Customize... sub-
menu item. Select the
Add from File... but-
ton, see Figure 14-21.

? 3 Navigate to the direc-
tory containing the

Figure 14-20
Make DLL Dialog Box

Figure 14-21
Customize Dialog Box

14-20 Avenue Wraps

Active X DLL to be loaded, click on the name of the .dll file and select the
Open button.

? 4 Wait until the Added Objects... box appears, see Figure 14-22 for a typical
message box display. Depending
upon the size the .dll file this may
take a few seconds. Once the mes-
sage box appears, click the OK
button.

? 5 On the left side of the dialog box, as
shown in Figure 14-21, scroll down
until the name of the toolbar, which
is included in the .dll file, appears.
Click on the square to the left of the
name to make the toolbar visible.

? 6 Click the Close button to dismiss the Customize dialog box.

The toolbar should now be visible and its functionality available to the end
user.

14.3.4 Creating a ComboBox

Creating a ComboBox control is similar to creating a Tool control with the following
exceptions:

1. The "stub" code for a ComboBox control is different from a Tool control. In
Figure 14-23 the "stub" code for a ComboBox control is shown. So that in Step
6 of Section 14.3.2 paste the "stub" code shown in Figure 14-23 in the Class
module.

2. Rather than adding an ImageList control to the form and loading icons, as
done in Steps 13 through 16 of Section 14.3.2, a ComboBox control will be
added to the form and code for the control's Click event and loading of the
form will be written. Shown in Figure 14-24 is the code for the control's Click
event and the Form_Load procedure. So that, replace Steps 13 through 16
of Section 14.3.2 with the following:

? 13 Select the ComboBox tool, see Figure 14-16, and drag a rectangle
within the form to add a ComboBox control to the form.

Figure 14-22
COM Objects Added

Message Box

Chapter 14 Application Deployment Methods 14-21

Option Explicit
'
' *
' * *
' * Name: ComboBox1 File Name: ComboBox1.cls *
' * *
' *
' * *
' * PURPOSE: CLASS MODULE DEFINING A COMBOBOX COMMAND WHICH CAN *
' * BE ADDED TO A TOOLBAR OR DRAGGED INDIVIDUALLY ONTO *
' * THE ARCMAP USER INTERFACE *
' * *
' * GIVEN: nothing *
' * *
' * RETURN: nothing *
' * *
' *
'
Private m_pApp As IApplication
Private m_pDoc As IMxDocument
Private m_pMap As IMap
Private m_pExt As IExtensionConfig
'
Implements ICommand
Implements IToolControl
'

Private Sub Class_Terminate()
'
' ---Clear member variables
 Set m_pMap = Nothing
 Set m_pDoc = Nothing
 Set m_pExt = Nothing
 Set m_pApp = Nothing
'
End Sub

Private Property Get ICommand_Enabled() As Boolean
'
' ---Command is enabled only if there is data in the map
 If m_pMap.LayerCount > 0 Then
 ICommand_Enabled = True
 Else
 ICommand_Enabled = False
 End If
'
End Property

Private Property Get ICommand_Checked() As Boolean
'
 ICommand_Checked = False
'
End Property

Private Property Get ICommand_Name() As String
'
' ---Set the internal name of this command. By convention, this
' ---name string contains the category and caption of the command
 ICommand_Name = "CEDRA_AVcad_Menus.Annotation_Commands"
'
End Property

Figure 14-23 "Stub" code for a ComboBox Class Module

14-22 Avenue Wraps

Private Property Get ICommand_Caption() As String
'
' ---Set the string that appears when the command is used as a
' ---menu item. This name appears in the Commands window on the
' ---right side of the Commands tab in the Customize dialog box
 ICommand_Caption = "Annotation_Commands"
'
End Property

Private Property Get ICommand_Tooltip() As String
'
' ---Define the pop-up help
 ICommand_Tooltip = "Annotation commands"
'
End Property

Private Property Get ICommand_Message() As String
'
' ---Set the message string that appears in the status bar of the
' ---application when the mouse passes over the command
 ICommand_Message = " "
'
End Property

Private Property Get ICommand_HelpFile() As String
'
'
End Property

Private Property Get ICommand_HelpContextID() As Long
'
'
End Property

Private Property Get ICommand_Bitmap() As esriCore.OLE_HANDLE
'
'
End Property

Private Property Get ICommand_Category() As String
'
' ---Set the category of this command. This determines where the
' ---command appears in the Commands panel of the Customize dialog
 ICommand_Category = "CEDRA_AVcad_Menus"
'
End Property

Private Sub ICommand_OnCreate(ByVal hook As Object)
'
' ---The hook argument is a pointer to Application object,
' ---establish a hook to the application
 Set m_pApp = hook
 Set m_pDoc = m_pApp.Document
 Set m_pMap = m_pDoc.FocusMap
'
' ---Transfer the IApplication object into global memory
 Set ugm_pApp = m_pApp
'
' ---Initialize the CEDRA Avenue Wraps global variables
 Call avInit(m_pApp)
'
End Sub

Figure 14-23 "Stub" code for a ComboBox Class Module (continued)

Initializing the
A v e n u e
Wraps DLL,
avwraps.dll,
globals in a VB
project file.

Chapter 14 Application Deployment Methods 14-23

Private Sub ICommand_OnClick()
'
' ---Add code to do some action when the command is clicked
'
End Sub

Private Property Get IToolControl_hWnd() As esriCore.OLE_HANDLE
'
' ---Form1 denotes the name of the form and Combo1 denotes the
' ---name of the ComboBox control
 IToolControl_hWnd = Form1.Combo1.hWnd
'
End Property

Private Function IToolControl_OnDrop(ByVal barType As _
 esriCore.esriCmdBarType) As Boolean
'
 If barType = esriCmdBarTypeToolbar Then
 IToolControl_OnDrop = True
 End If
'
End Function

Private Sub IToolControl_OnFocus(ByVal complete As _
 esriCore.ICompletionNotify)
'
' ---The SetComplete method on the ICompletionNotify object
' ---is called in the combobox click event
 Set pCompNotify = complete
'
End Sub

Figure 14-23 "Stub" code for a ComboBox Class Module (continued)

? 14 Double-click in a blank area within the form. The code module
associated with the form will appear.

? 15 Paste the code shown in Figure 14-24 in the code module window
and make the appropriate modifications. Specifically, the options
that should appear in the ComboBox's drop-down list and which
procedures are to be executed when an option is selected.

? 16 Set the Name property of the Form using the appropriate data field
in the Properties window. Note this name will be referenced in the
IToolControl_hWnd procedure of Figure 14-23.

3. Replace the code that was entered in Step 19 of Section 14.3.2 with the
following code:

Public ugm_pApp As IApplication
Public pCompNotify As ICompletionNotify

14-24 Avenue Wraps

Option Explicit
'
' *
' * *
' * Name: Form1 File Name: Form1.frm *
' * *
' *
' * *
' * PURPOSE: Populate and execute commands in a ComboBox control *
' * *
' * GIVEN: nothing *
' * *
' * RETURN: nothing *
' * *
' *
'
'

Private Sub Combo1_Change()
'
'
End Sub

Private Sub Combo1_Click()
'
' ---Let the application know that the combobox control
' ---no longer needs focus after an item is selected in
' ---the combobox
 pCompNotify.SetComplete
'
' ---Execute the command associated with the item that was
' ---selected in the combo box
 Select Case Combo1.ListIndex
 Case 0
 Call AnnDistance
 Case 1
 Call AnnAzimuth
 End Select
'
End Sub

Private Sub Form_Load()
'
' ---Delete all items in the combo box
 Combo1.Clear
'
' ---Add the desired items to the combo box
 Combo1.AddItem "Annotate Distance"
 Combo1.AddItem "Annotate Azimuth"
'
' ---Set the default item for the combo box
 Combo1.Text = "Annotate Distance"
'
End Sub

Figure 14-24 ComboBox Control Code

The ComboBox control requires another Public object, pCompNotify, which
is why we have an additional Public object defined in the code module.

4. At this point the ComboBox control has been defined.

Chapter 14 Application Deployment Methods 14-25

14.4 Using the Avenue Wraps DLL

14.4.1 General Commentary

In the Avenue Wraps distribution directory there will be a folder called DLL, which
contains the DLL file, avwraps.dll. This is the Dynamically Linked Library file
containing all of the Avenue Wraps discussed in the previous sections. The file
avwraps.dll can be referenced in the VBE environment within ArcMap or in a VB project
file. Using the avwraps.dll file enables the developer to create an application without
having the source for the Avenue Wraps included in the application, although the
avwraps.dll file will need to be included when distributing the application.

To reference the Avenue Wraps DLL in the VBE environment within ArcMap:

? 1 Invoke ArcMap, click the radial button to the left of the A new empty Map
label and select the OK button.

? 2 Click at the Tools menu and then at the Macros and Visual Basic Editor sub-
menus to display the VBE work environment of Figure 14-3.

? 3 Click at the Tools menu and then at the References... sub-menu.

? 4a If the avwraps.dll file is to be referenced for the very first time:

select the Browse... button, navigate to the directory where the avwraps.dll
file resides, select the file, click the Open button and then click the OK
button. Proceed to Step 5.

? 4b If the avwraps.dll file has previously been referenced on the computer:

scroll down in the list on the left side of the dialog box and click in the square
to the left of the CEDRA Avenue Wraps label and click the OK button.

? 5 Click in the square containing the plus (+) character to the left of the folder
called ArcMap Objects under the Project group in the Project window.

? 6 Double-click on the ThisDocument module name.

? 7 Scroll down in the Object drop-down list and select the MxDocument name.

? 8 Scroll down in the Procedure drop-down list and select the OpenDocument
name.

To minimize
the size of an
application,
reference the
A v e n u e
Wraps DLL,
avwraps.dll,
rather than in-
cluding the
source in the
application.

Referencing
the Avenue
Wraps DLL,
avwraps.dll, in
VBA.

Initializing the
A v e n u e
Wraps DLL,
avwraps.dll,
globals in
VBA.

14-26 Avenue Wraps

? 9 Insert the line Call avInit(Application) in the OpenDocument procedure.

? 10 Click the Run Sub/UserForm tool to execute the subroutine. This will
initialize the Avenue Wraps global variables.

The avwraps.dll has now been referenced in the VBA application, and all of the Avenue
Wraps are now available to the developer. The user can now create new modules and
begin to convert existing Avenue code or develop new code using the Avenue Wraps
“wraparounds”.

Note that any time a new module is inserted in the ArcMap document file, the
OpenDocument procedure will need to be re-executed. The OpenDocument procedure
is a good location to perform any initialization that may be required.

To reference the Avenue Wraps DLL in a VB project file:

? 1 Invoke Visual Basic Version 6.0.

? 2 Select the New tab, followed by clicking on the Active X DLL icon and then
select the Open button.

? 3 Click at the Project menu and then at the References... sub-menu.

? 4a If the avwraps.dll file is to be referenced for the very first time:

select the Browse... button, navigate to the directory where the avwraps.dll
file resides, select the file, click the Open button and then click the OK
button.

? 4b If the avwraps.dll file has previously been referenced on the computer:

scroll down in the list on the left side of the dialog box and click in the square
to the left of the CEDRA Avenue Wraps label and click the OK button.

The Avenue Wraps DLL has now been referenced and all of its procedures are available
to the developer for use. Note that the Avenue Wraps global variables will need to
be initialized. This is typically done in the ICommand_OnCreate procedure, see Figure
14-13.

Referencing
the Avenue
Wraps DLL,
avwraps.dll, in
VB.

Chapter 14 Application Deployment Methods 14-27

In helping to get started, the folder DATA, within the Avenue Wraps distribution
directory, contains an ArcMap document file, exercise.mxd, that references the
Avenue Wraps dll, avwraps.dll. As mentioned above, the ArcMap document file does
not have to contain the Avenue Wraps source modules when the Avenue Wraps dll
file is referenced in the document file. Within this document file there are sample VBA
macros demonstrating various Avenue Wraps functionality. Each module can be
opened and executed using the VBA Run tool. In additon, there is a custom tool bar
that demonstrates various types of user interaction with the map display, such as,
making a single pick, drawing a line, drawing a circle, etc. The source code for the tool
bar commands are in the ThisDocument module under the ArcMap Objects folder
within the Project category. Holding the cursor over a specific tool will result in a
ToolTip message being displayed. As such, the document file, exercise.mxd, serves
as an excellant starting point for the developer who wishes to begin converting an
Avenue based application into the ArcGIS environment. The developer should feel
free to modify this document file as desired.

14.4.2 Avenue Wraps Properties

When using the Avenue Wraps DLL file, avwraps.dll, the developer may wish to
access certain of the Public variables which are used in the DLL file. In this situation,
it is not possible to address the Public variable by its specific name but rather, the Public
variable needs to be addressed by its Property name. For example, the Public variable
ugEditOp can be accessed by using avwraps.EditOp, not ugEditOp. Likewise, the
Public variable ugcwDirName can be accessed by using avwraps.WorkDir. As can
be seen the convention is to use avwraps. followed by the Property name for the
particular Public variable. This convention needs to be followed when using the
Avenue Wraps DLL, avwraps.dll, in an application. If the Avenue Wraps source is
included in the application, then the Public variable name can be used as is and the
convention mentioned above ignored.

Shown below is a table of the Avenue Wraps Public variables and their corresponding
Property names.

Public Variable Name Property Description
ugAppName AppName Internal application name

ugcwDirName WorkDir Current working directory
ugEditMode EditMode Editor mode or status

ugEditOp EditOp Editor operation for Undo
ugerror Error Error detection flag

ugFalseX FalseX Spatial reference false X

In Getting
Started, the
exercise.mxd
file, located in
the Avenue
Wraps distri-
bution direc-
tory, can be
used as a
b e g i n i n g
point. Note
that this docu-
ment file was
built using
Version 8.2 of
ArcGIS.

14-28 Avenue Wraps

ugFalseY FalseY Spatial reference false Y
ugfNamelastchar PathCharacter Path name delineator: \
ughDialogBoxData HDialogData Horizontal Dialog contents
ughDialogBoxLeft HDialogLeft Horizontal Dialog X position
ughDialogBoxRight HDialogRight Horizontal Dialog Y position

ugLastOID LastOID Last OID processed by
avAddRecord, avGetFeature,
avReturnValue, avSetValue
and avSetValueG

ugLastTheme LastTheme Last Theme processed by
avAddRecord, avGetFeature,
avReturnValue, avSetValue
and avSetValueG

ugLayer Layer ILayer Object
ugLayerIndx LayerIndex Index into TOC for ugLayer
ugLayerStrg LayerString Name of ugLayer / ugTable

ugpFCls FeatureClass FeatureClass of ugLayer
ugPI PI PI value: 3.14159265358979

ugpProDesc Description Progress bar description
ugpProCancel Cancel Progress bar cancel status

ugpSR SpatialReference SpatialReference Object
ugsearchstring SearchString Search string

ugShapeT ShapeT IGeometry Object
ugSketch Sketch Sketch session flag

ugsnapTol SnapTol Snap Tolerance: 0.01
ugsnapTolMode SnapTolMode Snap Tolerance Mode (A/P)

ugTable Table IStandaloneTable Object
ugtheFTab FTab IFields Object
ugTolV1 TolV1 Tolerance Value: 0.005
ugTolV2 TolV2 Tolerance Value: 0.009
ugTolV3 TolV3 Tolerance Value: 0.00005
ugTolV4 TolV4 Tolerance Value: 0.00009
ugTolV9 TolV9 Tolerance Value: 0.0009

ugUpdateTOC UpdateTOC Automatic update of TOC
ugvDialogBoxData VDialogData Vertical Dialog contents
ugvDialogBoxLeft VDialogLeft Vertical Dialog X position
ugvDialogBoxRight VDialogRight Vertical Dialog Y position

ugvFileFrmLeft FileDialogLeft File Dialog X position

Public Variable Name Property Description

Chapter 14 Application Deployment Methods 14-29

ugvFileFrmRight FileDialogRight File Dialog Y position
ugWinStyle WinStyle Window Style for avExecute

ugWrkSpcDesc WrkSpcDesc Workspace description for
ugLayer

ugWrkSpcType WrkSpcType Workspace type for ugLayer
ugxPick LastX X coordinate of last pick

ugXYunits XYunits Spatial reference XY units
ugyPick LastY Y coordinate of last pick

Public Variable Name Property Description

14-30 Avenue Wraps

