APPENDIX D

L STNGS OF
AVENUEW RAPS

resentedin thisappendix aretheheadingsfor each of the AvenueWraps™ that were
discussed in the previous chapters. To eiminate the retyping of any code, the
attached CD includesan ArcMap™ document file(avwraps.mxd), that containsall of
the Avenue Wraps™ al ong with sampleswhich demonstrate the use of the Avenue Wraps™.
Infact, theArcMap document filecan beused asastarting point in creating an application. That
is, thedevel oper canimmediately begintoadd new VBA macrosandtool stothedocumentfile.

Although there are more than 2,000 Avenue requests, 90% of all Avenue programming will
probably use only 10% of the Avenue requests. This book presents more than 260 Avenue
Wraps, which isapproximately 10% of thetotal number of Avenuerequests. Assuch, itisthe
authors feelings that we have captured the most prevalent requests, which an Avenue
programmer would use. Thosewhich wedid not include could probably bewritten using the
techniques that are shown in this Appendix. That is one of the reasons for including this
Appendix alongwiththeCD, isthat, thereader can review the AvenueWraps™, seehow they
were written and perhaps apply this approach in converting other requests that were not
included in this book.

Oneof theissuesthat became apparent at the outset of our working with ArcObjects™ isthat
the vocabulary is different from that of Avenue. This, as can be expected, made converting
Avenue codeinto ArcObjects™ somewhat challenging. For example, legendsin Avenueare
referredtoasrenderersin ArcObjects™, whilethemesarenow called layers, and soforth. Itis
hoped that by providing the Avenueprogrammer with these Avenue Wraps™ we can decrease
theArcObjects™ learning curve, that is, by reviewing thesourcelistingsthedevel oper should
be ableto pick up the ArcObjects™ vocabulary. For example, thereader can find an Avenue
request, review the sourcelisting and find the corresponding ArcObjects™ terminology.

Following thisintroduction, thereis a section containing various notes, which describe key
pointsconcerning thedevel opment of the AvenueWraps™. Itisrecommended that thesenotes
bereviewed prior to examining thesourcelistings. 1n sodoing, themethodol ogy presentedin
the sourcelistings should be a little easier to understand.

nNnOZ——-0n-—-=r

O
WIU>XTS

mczm< >

D-2 Avenue Wraps

Asafinal note, every programmer hastheir own styleof writing code. Inreviewingthelistings,
thereader mayfed that adifferent approach should havebeen takeninwriting someof thewraps.
Thisvery well could betrue. Asthe saying goes, "thereis morethan oneway to skin acat".
What the authors have tried to do in devel oping the Avenue Wraps™, is not to devel op the
least amount of code, which morethan often is confusing, but rather to present wraparounds
that arefunctional, straightforward and well documented.

Notes regarding the Listings

’ ArcMap™ employs asingle-document interface, while ArcView® employsamulti-
document interface, which changesthemeaning of theGetActiveDocrequest greatly.

’ In Avenue, thevariabletheViewwaswidely used. Thisvariablehasbeen replaced by
the variable pmxDoc within the Avenue Wraps™.

’ Rather than passing objectsfor layersor tablesin theargument list for subroutinesor
functions, the name of the layer or tableis passed asavariable of Variant type.

’ When setting afield valuefor either afeatureor tablerecord, usetheStore method to
writethevaluetodisk, seethe Avenue Wraps™ avSetValue andavSetValueG.

’ In Avenue, therequest ReturnValuewasappliedtoaFTabor VTabin order toextract
avalueout of atable. In ArcObjects™, theValueproperty isusedtoextract thevalue

froman | Featureor IRow object. Thefollowingexampleshould explain:
With Avenue

aFTab = aThene. Get FTab

col S = aFTab. Fi ndFi el d("shape")

pFeat ure = aFTab. ReturnVal ue(col S, rec)

col A = aFTab. Fi ndFi el d("area")

t heArea = aFTab. Ret urnVal ue(col A, rec)
With AvenueWr aps

Di m pnxDoc As | MkDocunent

D m aThenme As Vari ant

D m aFTab As | Fields

D m aFeat C ass As | Featured ass

Di m aLayer As | FeaturelLayer

Dimrec, col A As Long

Di m pFeature As | Feature

D mtheArea As Doubl e

Call avGCet FTab(pmDoc, aThenme, _

aFTab, aFeat d ass, alayer)

Call avGCet Feature(pmDoc, aThene, rec, pFeature)

col A = aFTab. Fi ndFi el d("area")

t heArea = pFeat ure. Val ue(col A)

Appendix D Listing of Avenue Wraps™ D-3
|

’ The Avenue requests ChoiceAsString and ListAsString should be substituted with
theAvenueWraps™ avM sgBoxChoiceand avM sgBoxL ist, respectively.

’ Anexampleof converted Avenuecode, which cyclesthrough asel ected set of features
to compute atotal value, is shown below:

With Avenue
theFTab = theThene. Get FTab
theSel = theFTab. Get Sel ecti on
theFi el d = t heFTab. Fi ndFi el d(" Deposits")
total = 0.0
for each rec in theSel
deposit = theFTab. ReturnVal ue(theField, rec)
total = total + deposit
end
With AvenueWr aps
Di m pnxDoc As | MkDocunent
D mtheThene As Vari ant
D mtheFTab As | Fields
Di m aFeat C ass As | Featured ass
Di m aLayer As | FeaturelLayer
D mtheSel As | SelectionSet
DmtheField, iRec, rec, col A As Long
Dimtotal, deposit As Double
D mtheSel Li st As New Col | ection
Di m pFeat As | Feature
Call avGet FTab(pmxDoc, theThene, _
t heFTab, aFeat C ass, alayer)
Call avGCet Sel ecti on(pmxDoc, theThene, theSel)
theFi el d = t heFTab. Fi ndFi el d(" Deposits")
total = 0.0
Call avGCet Sel ectionl Ds(theSel, theSelList)
For iRec = 1 to theSel Li st. Count
rec = theSel List.lten(iRec)
Set pFeat = aFeatd ass. Get Feat ure(rec)
deposit = pFeat. Val ue(theFi el d)
total = total + deposit
Next

’ In Avenuethe @ character could beused to createapoint. Usethe AvenueWrap™,
avPointM aketocreatethepoint. For example:

With Avenue
aPoi nt = 5000.0 @5000.0
With AvenueWr aps
D m aPoi nt As | Poi nt
Set aPoi nt = avPoi nt Make(5000. 0, 5000. 0)

D-4 Avenue Wraps

’ In Avenue, thereguest Y esNoCancel was applied tothe MsgBox Classto determine
acourse of action from theuser. The value that was passed back by the request was
aBool ean, usingthe AvenueWraps, thereturnedval ueisaninteger whichwill beequal
to oneof the predefined VB constants. Thefollowing example should explain:

With Avenue
i ans = MsgBox. YesNoCancel (Msg, Headi ng, Default)
if (ians = Nil) then
do sonet hi ng
end
if (ians.Not) then
do sonet hi ng
end
With AvenueWr aps
Di m Msg, Headi ng As Vari ant
D m Default As Bool ean
Dimians As |nteger
Call avMsgBoxYesNoCancel (Msg, Heading, Default,
i ans)
If (ians = vbCancel) then
.... do sonething
End If
If (ians = vbNo) then
.... do sonething
End If
If (ians = vbYes) then
.... do sonething
End If
’ The Avenue request I1sNoDataClassDisplayed should be substituted with the
ArcObjects™ property, UseDefaultSymbol.
With Avenue
noDat a = alLegend. | sNoDat aCl assDi spl ayed
With AvenueWr aps
Di m pUni queRend As | Uni queVal ueRender er

Di m noDat a As Bool ean
noDat a = pUni queRend. UseDef aul t Synbol

’ TheAvenuerequest ClearMsg can bereplaced withthe AvenueWrap avClear Status.
Thefollowingexampleshouldexplain:
With Avenue
av. O ear Msg
With AvenueWr aps
Cal | avd ear St at us

Appendix D Listing of Avenue Wraps™ D-5

’ In Avenue, theprogrammer could haveanif ... then ... end statement on asingledata
line. InVBor VBA,ifanif ... then ... end statement appearsin red (denctingan error
condition) thedatalinecan bedecomposedintoamulti-linestatement. Thefollowing
exampleshouldexplain:

InAvenue
if (a =2.0) then b =4.0 end
InVB/VBA
Dima, b As Double
If (a =2.0) then
b =4.0
End I f

’ Theobject id (OID) valuesfor shapefiles start at 0 and increase sequentially by one,
while for personal geodatabasesthey start at 1.

’ The Avenue request ReturnFamilies could be used to get a list of the available
Windowsfonts. TheAvenueWrap avGetWinFontscan besubgtituedinitsplace. The
following exampleshould explain:

With Avenue

aFont Manager = Font Manager. The

aFont Li st = aFont Manager. ReturnFam | i es
With AvenueWr aps

Di m aFont Li st As New Col | ection

Cal |l avGet W nFont s(aFont Li st)

’ The Avenue request FindAlIByClass could be used to find all of the graphic text
elementsin aview. Using Avenue Wrapsthe following procedure could be used to
accomplish thesametask:

With Avenue

graphLi st = theVi ew. Get G aphi cs

gText Li st = graphLi st. Fi ndAl | Byd ass(G aphi cText)
With AvenueWr aps

Di m graphLi st As New Col | ecti on
Dmi As Long
Di m pEl enent As | H enent
Di m gTextLi st As New Col | ection
Call avVi ewGet G aphi cs(graphLi st)
If (graphList.Count > 0) Then
For i = 1 To graphLi st. Count
Set pHEl enent = graphList.lten(i)
If TypeO' pEl enment |s | TextEl enent Then
gText Li st. Add pEl enment
End If
Next
End If

D-6 Avenue Wraps

’ TheAvenuereguest ReturnProjected could be used to project afeatureinto aspecific
projection. TheArcObjects™ method, Project can beappliedtoan | Geometry object
to accomplish the same task. The following example shows how a feature can be
projected intothemap's (pMap) current projection (pSpatial Reference). Notethat it
isthe geometry (aShape) of the feature that is actually processed.

With Avenue
newShape = aShape. Ret urnProj ect ed(thePrj)
With AvenueWr aps
Di m pnxDoc As | MkDocunent
Dim pMap As | Map
Di m pSpati al Ref erence As | Spati al Ref erence
Di m aShape As | Geonetry
Set pnxDoc = Applicati on. Docunent
Set pMap = pnxDoc. FocusMap
Set pSpati al Ref erence = pMap. Spati al Ref er ence
aShape. Proj ect pSpati al Ref erence

’ The Avenuerequest ReturnUnProjected could be used to unproject afeatureintoits
own natural projection. The ArcObjects™ method, Project can be applied to an
| Geometry object to accomplish thesametask. Thefollowing exampleshowshow a
feature (aFeature) can be unprojected from the map's (pMap) current projection
(pSpatial Reference) intotheprojection of thel ayer (pFeatureClass) inwhich thefeature
resides. Notethat itisthegeometry (aShape) of thefeaturethat isactually processed.

With Avenue

t heNewShape = aShape. Ret ur nUnPr oj ect ed(t hePrj)
With AvenueWr aps

Di m pnxDoc As | MkDocunent

Dim pMap As | Map

Di m pSpati al Ref erence As | Spati al Ref erence

Dim pCbj ectd ass As | (bj ectd ass

D m aFeature As | Feature

Di m pFeat ureCl ass As | Featured ass

Di m pGeoDat aSet As | GeoDat aset

Di m aShape As | Geonetry

Set pnxDoc = Applicati on. Docunent

Set pMap = pnxDoc. FocusMap

Set pSpati al Ref erence = pMap. Spati al Ref er ence

Set pQbj ectd ass = aFeature. d ass

Set pFeatured ass = pQoj ect d ass

Set pCeoDat aSet = pFeat ured ass

Set aShape. Spati al Ref erence = pSpati al Ref er ence

aShape. Proj ect pCeoDat aSet . Spati al Ref erence

Appendix D Listing of Avenue Wraps™ D-7
e

’ The Avenue request SetAlias could be used to assign an alias to a field. The
ArcObjects™ property, AliasName can be applied to an I FieldEdit object to accom-
plishthesametask. Thefollowing exampleshowshow afield object can beassigned
an alias. ThisexampleprocessesaFTab but will work for VTab'saswell.

With Avenue
col = aFTab. Fi ndFi el d("aFi el d")
col . Set Ali as("New_Fi el d_Nane")
With AvenueWr aps
D m aFTab As | Fields
Dimcol As Long
DmpField As IField
Dim pFieldEdit As |Fiel dEdit
col = aFTab. Fi ndFi el d("aFi el d")
Set pField = aFTab. Fi el d(col)
Set pFieldEdit = pField
pFi el dEdi t. Al i asNane(" New_Fi el d_Name")

’ The Avenuerequest GetAliascould beused to get thealiasthat isassigned toafield,
using the Avenue Wraps™ avGetAlias wraparound, Avenue code using GetAlias
would be converted as follows:

With Avenue
col = aFTab. Fi ndFi el d("aFi el d")
anAlias = col.CGetAlias
With AvenueWr aps
D m aFTab As | Fields
Dimcol As Long
DimanAlias As String
col = aFTab. Fi ndFi el d("aFi el d")
anAlias = avGetAlias(col)

’ ArcGIl S9.x usersshould disregard any referencestotheesriCorelibrary. At9.x the
esriCore library was replaced with numerous other libraries. Note that it is not
necessarytoincludethenameof thelibraryinthedeclaration statement, such aslField.
Solelyfor clarificationisthenameof thelibraryincludedinthedecl aration statement.

’ Theremainder of thisAppendixisina.pdf filecalled AppendixD.pdf, whichisstored
in the CEDRA Avenue Wraps distribution directory. The Adobe Acrobat Reader
softwarecan beusedto print out thisfile, aswell as, any other softwarethat can process
a.pdffile.

D-8 Avenue Wraps

Appendix D Listing of Avenue Wraps™ D-9

How to Install the CEDRA Avenue Wraps Document File:
Step 1:

TheCEDRA AvenueWr aps™ softwarerequiresapproximatel y five(5) megabytesof disk space
and will operate under Windows NT®, Windows 2000° and Windows XP®. Onetop level
directory, whosedefault nameisCEDRA, will becreated. Shouldtheuser wishtouseadifferent
name, theuser can doso. WithintheCEDRA directoryasingleArcM ap ™document filecalled
avwr aps.mxd will bestored. Thisfilecontainsall of themodulesand formsthat comprisethe
AvenueWraps

Itisassumedin thisinstallation discussion, that the"C:" partition will be used to contain the
software. If thisisnot thecasg, it ispossibleto substitutetheappropriatedriveidentifier when
performing the installation. It is also assumed that the individual installing the softwareis
somewhat familiar with PC terminol ogy, hasaworking knowledgeof the PC andtheavailable

text editorsthat areinstalled on the PC, andissomewhat familiar with ArcGI S™.

Notethatin order tooperate CEDRA AvenueWr aps, ArcGI S™ Version 8.1.2 or higher needs
tobeingtalled on thePC. The user should verify that thisrequirement is satisfied thistime.

The CEDRA Avenue Wraps software consists of a single CD and contains the ArcMap
document fileinacompressedfileformat. Prior toinstallingthesoftware, apartition onthe PC
should be found that contains the necessary amount of free disk space, five (5) megabytes.

Step 2:

Thecontentsof theCEDRA AvenueWr apssoftwarecan now beextracted and stored ontothe
PC. The CD should now beinserted into the appropriate drive.

Step 3:
Select the Start button from thetask bar followed by selecting theRun... menu item.

Step 4:

The CEDRA softwareinstallation program can beinvoked by typing:

D:SETUP

D-10 Avenue Wraps

If the CD drive identifier is something other than D, the user should make the appropriate
substitution in the above command.

Theprogramwill then poseaseriesof screensguiding theuser through theinstallation process.
Oncethefinal screen hasbeen displayed, the program will decompressthe document file, and
storethefilein the appropriate directory location. After thefile has been decompressed, the
user can invokeAr cM ap and open thedocument file.

How to Invoke the CEDRA Avenue Wraps Document File:

Thisversion of CEDRA AvenueWraps™ isavailableasan ArcM ap™ document filecalled
avwr aps.mxd. Thisdocument filecontainsonly themodul esand formsthat comprisetheAvenue
Wraps. Using avwr aps.mxd thedevel oper can createadditional forms, modulesand controls
to establish a custom application. To begin using the CEDRA Avenue Wr aps perform the
following:

01 InvoketheArcMap™ program.

02 Click intheradial button totheleft of theAn existing map: labdl, then click theOK
button.

03 Navigatetothe\cedradirectory, click ontheavwr aps.mxd filename, andthen click
the OK button.

04 At this point the developer can begin reviewing the CEDRA Avenue Wraps and
building acustom application.

Appendix D Listing of Avenue Wraps™ D-11

Sample Data:

InadditiontotheAr cM ap document fil e, avwr aps.mxd, seven VVBA modul esand two shapefiles
areincluded containing samplecodeand data, whichillustratetheuseof theCEDRA Avenue
Wraps. Thesesamplesinclude:

Modulel.bas Sampleillustrating how to process graphics and symbols, thegraphicsthat
are created are based upon an arbitrary coordinate system.

Module2.bas Sampleillustrating how to processfeature geometry. Thisisdoneby using
thefirst selected feature in a polygon theme.

Module3.bas SampleillustratinghowtocreateaShapefileand add afesturetoit. Thesample
will also show how an operation can be defined.

Moduled.bas Sampleillustrating how to perform various shape editing operations. This
samplerequiresseven polygon featuresand onepolylinefeature be sel ected
prior to executing this macro. Thefirst selected polygon and the selected
polyline featureswill be used in a split operation. The remaining selected
polygons will be used to demonstrate (a) merging, (b) intersecting and (c)
unioning operations. TheshapefilesL_OpgandL_Opl, which areincluded
in the distribution set, can be added to ArcM ap and used in thissample.

Moduleb.bas Sampleillustrating how to create, add records, popul ate and summarize a
table.

Modulet.bas Sampleillustrating how to create a new shapefilethat has a default spatial
referenceandthreeattributesusinganamethat theuser entersinafiledialog
box. Theshapefileistocontain Polylinefeaturesandwill beaddedtothemap
once it has been created.

Module7.bas Sampleillustrating how to create various types of message boxes.

Toimport and executeasampleperformthefollowing:

01 InvoketheArcMap™ program.

02 Click intheradial button totheleft of theAn existing map: labdl, then click theOK
button.

D-12 Avenue Wraps

03 Navigatetothe\cedradirectory, click ontheavwr aps.mxd filename, andthen click
the OK button.

04 Click at theT oolsmenuandthen at theM acr osand Visual Basic Editor sub-menus.

a5 Click at theplussign, +, totheleft of the Pr oject (avwr aps.mxd) label inthe project
window to expand the project document.

06 Click at theFilemenuandthen at thel mport File... sub-menu.

a7 Navigatetothe\cedr adirectory, click onthedesi red samplemodul efilename, andthen
click the Open button.

08 Click attheplussign, +, tothel eft of theM oduleslabel intheproject windowtoexpand
the modul e document.
09 Scroll downthelist of modul esand find thesampl emodul efilethat wasimported. Once

found, double-click on the name of the module to open the module.

010 ClickattheRun Sub/UserFormtool (p) to executethe samplecode.

Appendix D Listing of Avenue Wraps™ D-13

Public Sub avaC assMake(acl ass, shapeList, theFeat)

' * *
o PURPCSE: TO CREATE A SPECI AL FEATURE OBJECT FROM A PO NT LIST *
' * *
" * G VEN ad ass = the type of special feature *
v 11 for Pol yLi neM *
v 12 for Pol yLinez *
v 13 for Pol ygonM *
' 14 for Pol ygonz *
tox 15 for PointM *
tox 16 for PointZz *
tox 17 for Milti PointM *
tox 18 for MiltiPointz *
b 31 for PolyLineM and Pol yLi nezZ *
b 32 for Pol ygonM and Pol ygonZ *
b 33 for PointM and PointZ *
o 34 for MiltiPointM and MultiPointZ *
v 41 for Pol yLine *
' 42 for Pol ygon *
b 43 for Point *
tox 44 for Ml ti Point *
b shapeList = the list of points conprising the feature *
b structure of shapeList is: *
v Item 1: nunber of parts *
b Item 2: nunber of points in part 1 *
b Iltem 3: x value of point 1 in part 1 *
b Iltem 4: y value of point 1 in part 1 *
b Item 5: z value of point 1 in part 1 *
b Item 6: mvalue of point 1 in part 1 *
b Item 7: id value of point 1 in part 1 *
b Item 8: Repeat Itens 3 - 7 for each *
' poi nt *
b Repeat Itens 2 - 8 for each part *
' * *
' * RETURN: t heFeat = the special feature *
' * *
' * Dim adass As Integer, shapelList As New Collection *
o Dim theFeat As |Point, IMiltiPoint, |Polyline, or |Polygon *
' * *
Public Function avAddDoc(aboc As | Unknown)

' * *
' * PURPOSE: TO ADD A LAYER OR TABLE TO THE MAP *
' * *
' * G VEN aDoc = the docunent to be added *
' * *
' * RETURN: avAddDoc = error flag (0O = no error, 1 = error) *
' * *
tox NOTE: When adding multiple layers and/or tables to the nmap *
o in succession, it may be appropriate to set the global *
o variabl e ugUpdateTOC to False prior to adding the *
o first layer or table. Then, prior to adding the |ast *
o layer or table set ugUpdateTOC to True. In so doing, *
b the TOC will be refreshed only once and not every tinme *
o a layer or table is added (Wwen using the DLL version *
b of Avenue Waps set the property avw aps.ugUpdateTOC *
o to True or False, do not use the global ugUpdateTOC) *
' * *
' * DimabDoc As | Unknown *
' * Dim avAddDoc As | nteger *
' * *
Public Function avAddFields(pmDoc As |MDocunent, theThene, theFieldS)
' * *
' * PURPOCSE: TO ADD FIELDS INTO A LAYER OR TABLE *
' * *
' * G VEN pmxDoc = the active view *
tox t heThene = the thene or table to be processed *
o theFi el ds = list of fields to be added, the itens in *
' this list are IFieldEdit objects, not *
' strings *

D-14 Avenue Wraps

TE— *
b RETURN: avAddFields = error flag (0O = no error, 1 = error) *
TE— *
' * NOTE: In order to add fields into a layer or table the *
o editor can not be in an edit state, this routine wll *
tox stop the editor if the editor is in an edit state *
o thereby saving any changes that may have been nmmde, *
b prior to adding the fields *
TE— *
' * Dim pnxDoc As | MkDocunent *
' * Dim theTheme As Variant, theFields As New Collection *
' * Dim avAddFi el ds As |nteger *
' * *
Public Function avAddRecord(pmxDoc As | MDocunent, theThene) As Long

' * *
' * PURPCSE: TO ADD A RECORD | NTO A LAYER OR TABLE *
TE— *
' * G VEN pmxDoc = the active view *
tox t heThene = the thene or table to be processed *
TR— *
b RETURN: avAddRecord = the id of the record that was added, if *
o a record can not be added will be -1 *
TR— *
' * Dim pnxDoc As | MkDocunent *
" * DimtheTheme As Variant *
" * Dim avAddRecord As Long *
TR— *
Public Sub avAsList(theFeature As |Feature, shapelList)

TR— *
b PURPCOSE: TO CREATE A LIST CONTAINING THE PO NTS THAT COWPRI SE *
' A PO NT, LINE OR POLYGON FEATURE *
TR— *
" * G VEN theFeature = feature to be processed *
TR— *
tox RETURN: shapeli st = the shape's list of points for each part *
b structure of shapelist is: *
b Item 1: collection of points in part 1 *
b Repeat Item 1 for each part *
b So that, shapeList is a list of *
o collections with each collection *
v containing points *
TR— *
o NOTE: Use subroutine avPl AsList when an |Geonetry object is *
b known and not an |Feature object *
' * *
' * DimtheFeature As | Feature *
" * Dim shapeList As New Col |l ection *
' * *
Public Sub avAsList2(theFeature As |Feature, shapelList)

T *
o PURPCOSE: TO CREATE A LIST CONTAINING THE PO NTS THAT COWPRI SE *
o A LINE OR POLYGON FEATURE *
TR— *
" * G VEN theFeature = feature to be processed *
' * *
o RETURN: shapelLi st = the list of points conprising the feature *
b structure of shapelist is: *
v Item 1: nunmber of parts *
b Item 2: nunber of points in part 1 *
v Item 3: point 1 in part 1 *
v Item 4: point 2 in part 1 *
o Item 5: . *
o Item 6: . *
v Itemn: point nin part 1 *
b Repeat Itenms 2 - n for each part *
TR— *
tox NOTE: Use subroutine avAsList3 when an |Geonetry object is *
b known and not an |Feature object *
' * *

Appendix D Listing of Avenue Wraps™ D-15

' * DimtheFeature As |Feature *
" * Dim shapeList As New Col |l ection *

' *

Public Sub avAsList3(theShape As |Geonetry, shapelList)
*

*

PURPGCSE: TO CREATE A LIST CONTAINING THE PO NTS THAT COWVPRI SE
A LINE OR POLYGON

G VEN: theShape = feature to be processed

RETURN: shapeList = the list of points conprising the feature
structure of shapeList is:
Item 1: nunber of parts
Item 2: nunber of points in part 1
Item 3: point 1 in part 1
Item 4: point 2 in part 1
Item 5: .
Item 6: .
Itemn: point nin part 1
Repeat Itens 2 - n for each part

Use subroutine avAsList2 when an |Feature object is
known and not an |Geonetry object

Di m t heShape As | Geonetry
Di m shapeLi st As New Coll ection

L T R T T R B

lic Function avAsPolygon(plnput As |Unknown) As |GCeonetry
PURPGCSE: CONVERT | NPUT | NTO POLYGON GEQVETRY
G VEN: pl nput = the input to be converted
RETURN: avAsPol ygon = pol ygon geonetry

Di m pl nput As | Unknown
Di m avAsPol ygon As | Geonetry

e
c

ook kb Ok % % ok o Ok Ok kR ok ok ok ok % F ok Ok ok % % %k ok F ¥ oy FT F ok F 3k o Ok ok Xk % X Tk kX K ok ox K kX 3k 3k ok ok kX X 4 kX K oy

ic Sub avAsTokens(theString, delString, UpperLower, thelList, nWrds)
PURPCSE: Read a text string, a word delineator and an indicator
whether to change all characters to upper or |ower
case characters, and
1. Renove the leading and trailing blank spaces; and
2. Create a list of words from the contents of the
read text string excluding therefrom any bl ank
spaces that nmy be present between the words; and
3. Conpute the number of words in the returned Ilist.

G VEN: theString = the input string
del String = the word delineator
UpperLower = U - change all characters to upper case

L - change all characters to |ower case
X - no change in terms of case and do not
trimleading/trailing characters

= any other character - no change
RETURN: t heLi st = the returned list of words
n\Wor ds = nunber of words extracted
NOTE: When the word delineator is a single blank character

and the first character in any word that is extracted
is the TAB character, the TAB character is renoved
fromthe word as long as UpperLower is not equal to X

Dim theString As String, delString As String
Di m Upper Lower As String
Dim theList As New Col |l ection, nWrds As Integer

ok ok R R kR ok ok ok Sk 3k 3k 3k R kR 3k ok Ok R % % ok ok ok F O k() F F F F % Ok Ok ¥ ¥ F

D-16 Avenue Wraps

Public Function avBasicTrim(theString, LeadChar, Trail Char)
' * *
' * PURPCSE: REMOVE FROM A G VEN STRING THE SPECI FI ED LEADI NG *
b AND/ OR TRAI LI NG CHARACTERS *
TE— *
' * GdVEN theString = the given string to be processed *
b LeadChar = the characters to be renoved at the *
b start of the given string *
b Trai |l Char = the characters to be renpved at the *
v end of the given string *
TE— *
' * RETURN: avBasicTrim = the resultant string *
' * *
' * NOTE Bl ank characters are not renpved from theString *
TR— *
tox Dim theString As String, LeadChar As String, TrailChar As String *
' * DimavBasicTrimAs String *
' * *
Public Sub avBitmapC ear(psTabl eSel As |SelectionSet, theRcrd)
TE— *
o PURPCSE: REMOVE A RECORD FROM THE SELECTED SET FOR A LAYER OR *
v TABLE *
' * *
' * G VEN psTabl eSel = selection set for a theme or table *
tox theRcrd = record to be renoved from the selection *
TR— *
' * RETURN: not hi ng *
' * *
' * Dim psTabl eSel As | Sel ecti onSet *
" * DimtheRcrd As Long *
TR— *
Public Sub avBitmapC earAll (psTabl eSel As |SelectionSet)
' * *
o PURPCSE: REMOVE ALL RECORDS FROM THE SELECTED SET FOR A LAYER *
v OR TABLE *
TR— *
' * G VEN psTabl eSel = selection set for a theme or table *
' * *
' * RETURN: not hi ng *
TR— *
' * Dim psTabl eSel As | Sel ecti onSet *
TR— *
Public Sub avBitnmapSet(pnmxDoc As | MDocunent, theThenme, theRcrd)
' * *
o PURPCSE: ADD A RECORD TO THE SELECTED SET FOR A LAYER OR TABLE *
TR— *
' * G VEN pmxDoc = the active view *
tox theTheme = the theme or table to be processed *
b theRcrd = the record to be added to the selection *
TR— *
' * RETURN: not hi ng *
TR— *
' * Dim pnxDoc As | MkDocunent *
' * DimtheTheme As Variant, theRcrd As Long *
' * *
Public Function avCalcul ate(pnxDoc As | MDocunment, theTheneg,

aCal cString, aField) As Integer
TR— *
o PURPCSE: TO APPLY A CALCULATION TO A FIELD IN A LAYER OR TABLE *
' * *
" * G VEN pmxDoc = the active view *
tox t heThene = nanme of theme or table to be processed *
tox aCalcString = calculation string to be applied *
b sanple string field equation *
v aCal cStr = """abcd""" *
b sanple nuneric field equation *
b aCal cStr = "([SLN] - " + CStr(ii) + ") *
tox aField = field to be populated (index val ue) *
TR— *

Appendix D Listing of Avenue Wraps™ D-17

RETURN: avCal culate = error flag as noted bel ow
0O : no error
1 : thene or table not found
2 : error in performng calculation
3 : no records selected
4 : an edit session has not been started

NOTE: (a) If the layer or table contains selected records,
then only the selected records will be processed,
if there are no selected records, then the entire

table will be processed
(b) If the layer or table to be processed supports
being editted outside of an edit session then it
is not necessary to nake the layer or table
editable. If the layer or table does not support
this and the editor is not in an edit state this
function returns the error code of 4 (see above)
(c) If the layer or table has any joins, no progress
bar will be displayed, otherwise a progress bar
wi Il be displayed
(d) Wen a layer or table has a join note that it is
required to prefix the field nane with the nane of
the layer or table (do not use the alias nanme of
the layer or table) when getting the field index
value, for exanple if layer ABCD is joined to the
table EFG and the attribute 123 appears in ABCD,
the argument in FindField would be:
aField = theFTab. Fi ndFi el d("ABCD. 123")
(e) The syntax for aCalcString shown above works for
both shapefiles and personal geodatabases

Di m pmxDoc As | MkDocunent
Dim theThene As Variant, aCalcString As String, aField As Long
Di m avCal cul ate As Integer

I T

Public Sub avCheckEdits(pEditor As |IEditor, pDataSet As |Dataset)

PURPGCSE: TO PERFORM CHECKS ON THE EDI TI NG OF DATA

G VEN: pEditor = the ArcMap Editor extension
pDataSet = the dataset to be processed, if NOTH NG is
specified and if the editor is in an edit
state, the editor is stopped saving any
edits that may have been mmde

RETURN: not hi ng

NOTE: This routine first checks if the editor is in an edit
state, if not, this routine does nothing, if it is in
an edit state it will check if the dataset passed in

is currently being edited, if not the routine saves
the edits on the dataset currently being edited and
starts the editor on the dataset that is passed in

Dim pEditor As |Editor
Di m pDat aSet As | Dat aset

* ok K ok ok ok ok % F g KT K K K Ok ok ok ok ok ok % Ok Ok K Kk % ok ok ok K % F T Ok ok 4 Kk Ok ok ok Kk F ko *F Ok ok F K ok ok ok Kk * F * ok Ok ok ¥ x F * Ok * * *F
$ ok kR R %k ok ok ok % % 3k %k %k ¥ ¥ F

Public Function avCrcleMvakeXY(xPt, yPt, rad) As |Curve

' *
' PURPCSE: TO CREATE A CIRCLE FROM COORDI NATES AND A RADI US *
' *
' G VEN: x Pt = x coordinate of circle center *
' yPt = y coordinate of circle center *
' rad = radius of circle *
' *
' RETURN: avCircl eMakeXY = the curve feature *
' *
' *
' *

Dim xPt As Double, yPt As Double, rad As Double
Dim avCGircl eMakeXY As | Curve

D-18 Avenue Wraps

TE— *
Public Function avd ean(aShapel As |Geonetry) As |Ceonetry

' * *
' * PURPCSE: TO VERIFY AND ENFORCE THE CORRECTNESS OF A SHAPE *
TE— *
" * G VEN aShapel = shape to be cleaned *
' * *
' * RETURN: avC ean = new shape reflecting the cleaning *
TE— *
' * Dim aShapel As | Geonetry *
' * Dimavdean As | CGeonetry *
TE— *
Public Sub avd earSel ecti on(pnxDoc As | MkDocunent, theThene)

T *
" * PURPCSE: CLEAR THE SELECTION SET FOR A LAYER OR TABLE *
TE— *
' * G VEN pmxDoc = the active view *
v theTheme = the thenme or table to be processed, if NULL *
b all selected features in all thenes will be *
b desel ect ed *
TR— *
' * RETURN: not hi ng *
' * *
' * Dim pnxDoc As | MkDocunent *
" * DimtheTheme As Variant *
TR— *
Public Sub avd earSel ection2(pmkDoc As | MDocurment, theThene)

' * *
" * PURPCSE: CLEAR THE SELECTION SET FOR A LAYER OR TABLE *
TR— *
' * G VEN pmxDoc = the active view *
b theTheme = the thene or table to be processed, if NULL *
tox is specified all selected features in all *
o themes will be desel ected *
TR— *
' * RETURN: not hi ng *
TR— *
tox NOTE: Wien a feature layer is being processed, the display *
tox is not updated to reflect the deselection of the *
b features. This is useful when perform ng |oops where *
o it is not necessary to have the screen redrawn after *
b each iteration within the loop (since refreshing the *
o screen is slow this subroutine can be very useful) *
' * *
' * Dim pnxDoc As | MkDocunent *
" * DimtheTheme As Variant *
TR— *
Public Sub avC earStatus()

' * *
' * PURPCSE: CLEAR THE STATUS BAR AREA *
TR— *
' * dVEN not hi ng *
TR— *
' * RETURN: not hi ng *
' * *
Public Function avCd one(theOoject As |Unknown) As |C one

T *
' * PURPCSE: MAKE A NEW OBJECT BY COPYI NG AN EXI STI NG OBJECT *
TR— *
' * G VEN theObj ect = object which is to be copied *
TR— *
' * RETURN: avd one = copy of the object *
TR— *
" * DimtheObject As |Unknown *
" * DimavCone As |Cone *
TR— *
Public Sub avConvertArea(theValue, fromnit, toUnit)

T~ *
' * PURPCSE: CONVERT AN AREA VALUE FROM ONE UNIT | NTO ANOTHER *

Appendix D Listing of Avenue Wraps™ D-19

G VEN thevValue = the value to be converted
fromUnit = the fromunit of neasure
1 : Inches 3 : Feet
4 : Yards 5: Mles
7 : MIlineters 8 : Centineters
9 : Meters 10 : Kiloneters
toUnit = the to unit of neasure
3 . Feet 9 : Mters

RETURN: not hi ng
NOTE: The argunment theValue is nodified by this procedure

Dim theVal ue As Vari ant
Dim fromnit As esrilUnits, toUnit As esrilnits

B T T I N

Pu

ic Sub avConvertDistance(theValue, fronUnit, toUnit)

PURPCSE: CONVERT A DI STANCE VALUE FROM ONE UNIT | NTO ANOTHER

G VEN: thevValue = the value to be converted
fromUnit = the fromunit of neasure
1 : Inches 3 . Feet
4 : Yards 5: Mles
7 : MIlineters 8 : Centineters
9 : Meters 10 : Kiloneters
12 : Decineters
toUnit = the to unit of neasure
1 : Inches 3 . Feet
7 : MIlineters 8 : Centineters
9 : Meters

RETURN: not hi ng
NOTE: The argunment theValue is nodified by this procedure

Dim theVal ue As Vari ant
Dim fromnit As esrilUnits, toUnit As esrilnits

Pu

ic Sub avCreateTable(pTable As iTable, pCursor As |Cursor, filName

PURPGSE: TO CREATE A NEW dBASE FILE FROM A TABLE USING DATA IN
A CURSOR AND ADD I T TO THE DOCUVMENT

G VEN: pTable = |Table object to be processed
pCursor = |Cursor object containing the data that wll
be witten to the new .dbf file
filName = nane of the new dBase file to be created,
if the name does not contain a conplete
pathnane the current working directory

will be used, some exanples include:
c:\project\test\atabl e. dbf
at abl e. dbf
RETURN: not hi ng
NOTE: (a) If the new dBase file that is to be created exists
on disk, it will be deleted and then rewitten
(b) If the new dBase table that is to be created
exists in the docurment, it will be renpbved prior

to adding it back in
(c) The argument fil Name can or can not contain the
.dbf extension

Dim pTable As |Table, pCursor As I|Cursor, filNane As String

* g R K o R ok ok ok K K F Ok ok ok ok K % K ok ok F ok x KT ok ok F F o4 K F ok K ok ok ok K F ok K K ok % K 5 KT K ok ok K 4 F K K ok ok K * F K * % *

B T A T T T I R R I T N

D-20 Avenue Wraps

Public Function avDel eteDS(nane As String)
*

PURPGCSE: DELETE A DATASET SUCH AS A SHAPEFI LE OR DBASE FILE

G VEN: nane = name of the dataset to be deleted, if the
name does not contain a conplete pathnane
the current working directory will be
used, sone exanples of nane for a

shapefile:

c:\project\test\l_0Oln
access database:
c:\project\test\nontgonery
dBase file:
c:\project\test\table
dataset within an access database:
G Gid c:\project\test\L_0. ndb

RETURN: avDeleteDS = error flag (0O = no error, 1 = error)
NOTE: (a) The dataset nust not appear in the Table of
Contents if it does an error will be generated,

use the subroutine avRenpbveDoc to renpve the
dataset from the Table of Contents before calling
this function
(b) If the name passed in contains an extension such
as .shp, .mdb, .dbf, etc., it will be stripped off
and no error will be generated
(c) Wen a dataset within an access database is to be
del eted, the programer specifies the name of the
dat aset and the personal geodatabase with at |east
one blank character (space) separating the two
items. In this node the full pathname for the
personal geodatabase nust be specified.

Dim name As String
Di m avDel et eDS As | nteger

Sk R Rk ok ok Sk Sk Sk ok ok kR 3k 3k R R R % % ok ok ok % % 3k %k F ¥ ¥

ic Function avDirExists(name) As Bool ean

)
c
* Ok X ok ok ok R T K K Ok ok F k ox ¥ % RTT K ok ok K 4 ok ok % o F x KTk K F Ok k k ok ok % ok F % % F ok k ok ok F x F ok F F Ok ok F F K K ok ok ok F x

. *
: PURPGCSE: DETERM NE | F A DI RECTORY EXI STS OR NOT :
' G VEN: name = nane of directory to be checked, if the *
' directory is not in the current folder a *
: conpl ete pathnane nmust be specified :
: RETURN: avDirExi sts = existence flag (true = yes, false = no) :
' Dim name As String *
: Di m avDir Exi sts As Bool ean :
'Pu lic Sub avDisplaylnvalidate(aFl ag) .
: PURPGCSE: TO REFRESH OR REDRAW THE ACTI VE DI SPLAY :
' G VEN: aFl ag = when to redraw (true = at the next refresh, *
: false = i mediately) :
: RETURN: not hi ng :
: Di m aFl ag As Bool ean :
'Pu lic Sub avDocActivate(aNane))
: PURPGCSE: TO ACTI VATE A NEW VI EW (DATA FRAME) :
: G VEN: aName = name of the document to be activated :
: RETURN: not hi ng :

Appendix D Listing of Avenue Wraps™ D-21

' * DimaName As String *
TE— *
Public Sub avExecute(aCommand)
T~ *
' * PURPOSE: TO EXECUTE A SYSTEM LEVEL COMVAND *
TE— *
" * G VEN aComand = the conmand to be executed *
TE— *
' * RETURN: not hi ng *
TE— *
tox NOTE: Once the command has been issued, the statenents that *
' follow the call to avExecute will be imediately *
b executed, to pause ArcMap until the command is done, *
v one possibility is to perform a loop checking for the *
o existence of a file that is created when the conmand *
o has finished processing, if this approach is suitable *
b use the subroutine avExecute2 rather than avExecute *
' * *
" * DimaCommand As String *
' * *
Public Sub avExecute2(aCommand, aFileNane)
' * *
b PURPCSE: TO EXECUTE A SYSTEM LEVEL COWMMAND PAUSI NG ARCVAP UNTIL *
b A SPECI FIC FILE HAS BEEN FOUND *
TR— *
" * G VEN aCommand = the conmmand to be executed *
o aFileNanme = the file to be searched for, until the *
tox file is found this subroutine continues to *
' process, once the file is found this *
b subroutine will termnate *
' * *
' * RETURN: not hi ng *
' * *
tox NOTE: (a) Once the conmand has been issued, the statenents *
tox that follow the call to avExecute2 will not be *
o executed until the file, aFileName, has been found *
o (b) In addition to waiting for the file, aFileNane, *
o to exist, this subroutine will also term nate when *
tox a file whose nanme is the sane as aFileNanme but has *
o no file extension and is consistent in file size. *
o For exanple, if aFileName is c:\temp\aFile.txt, *
b this subroutine will termnate if c:\tenp\aFile is *
o found and its file size is the sane 10 consecutive *
' tines *
b (c) The ArcMap docunment should have a name assigned to *
o it other than the default of "Untitled...", if not *
o it has been known for the Shell function to fail *
tox for sone reason, so assign a nane to the document *
b (d) For Wndows 2000 conputers, this subroutine works *
b much better than avExecute *
TR— *
' * Dim aCommand As String, aFileName As String *
TR— *
Public Sub avFeaturelnvalidate(pmxDoc As | MDocunment, _

theFeature As | Feature)
' * *
' * PURPOSE: REDRAW A FEATURE *
' * *
' * G VEN pmxDoc = the active view *
b theFeature = feature to be redrawn *
TR— *
' * RETURN: not hi ng *
TR— *
' * NOTE The thenme or layer in which the feature resides in *
b must have been nmmde editable with avSetEditable prior *
b to calling this subroutine to ensure ugWkSpcType is *
o properly defined *
TR— *
' * Dim pnxDoc As | MkDocunent *

D-22 Avenue Wraps

' * DimtheFeature As |Feature

' *

Public Function avFieldGetType(pField As iField) As esriFieldType
*

* %

PURPGCSE: DETERM NE THE TYPE OF FIELD THAT A FIELD OBJECT IS

G VEN: pField = field object to be processed
RETURN: avFi el dGet Type = nuneric value denoting type of field
0 : Small Integer

1 : Long Integer
2 : Single-precision float
3 : Doubl e-precision float

4 : String
5 : Date
6 : Long Integer denoting the O D
7 @ Ceonetry
8 : Blob

DimpField As iField
Di m avFi el dGet Type As esri Fi el dType

e
c

lic Function avFieldvake(aNare, aFieldType, nChr, ndr) As |FieldEdi
PURPCSE: CREATE A FIELD THAT CAN BE ADDED TO A LAYER OR TABLE

G VEN: aName = name of field to be created
aFiel dType = type of field to be created as denoted
by the strings shown below on the left,
to the right of these strings are the
field types that are actually created

BYTE : Small | nteger
CHAR : String
DATE : Date
DECI MAL : Single
DOUBLE . Doubl e
FLOAT : Single
| SODATE . Date
| SODATETI ME : Date
| SOTI ME . Date
LOG CAL : String
LONG . Integer
MONEY : Doubl e
SHORT : Small |Integer
BLOB : Blob
VCHAR : String
nchr = total character width of field including

deci mal point and negative sign, if they
are to appear in the field

ndr = nunber of digits to the right of the
decimal point, 0 for non-nuneric fields

RETURN: avFi el dvake = field object that was created
NOTE: (a) This routine can not be used to create a geonetry
field
(b) If the name of the field exceeds 10 characters the
field nane that is created will contain only the

first 10 characters (use avSetAlias after the
table is created to assign the desired field nane)

Dim aNane As String, aFieldType As String
Dim nchr As Long, ndr As Long
Di m avFi el dvake As |Fiel dEdit

I T T T T T T S R

e
c

* ok R DT K K ok ok b b ok ok % F o Ok ok Ok ok ok kb b ok b 3k Sk Sk sk k% ok Ok b ok % % K ok % ok Ok oy FTT K K ok Ok ok k% % % ok Ok k5 % F oy

lic Function avFileCopy(nameFrom naneTo)

*

PURPGCSE: COPY A FILE FROM ONE LOCATI ON | NTO ANOTHER *

Appendix D Listing of Avenue Wraps™ D-23

" * G VEN nameFrom = nane of file to be copied *
o naneTo = nane of destination file *
TE— *
' * RETURN: avFil eCopy = error flag (0O = no error, 1 = error) *
' * *
b NOTE: (a) Wldcard characters can only be used in the |ast *
o path conponent of the naneFrom argument, that is: *
tox nameFrom = "c:\mydocunments\letters*.doc" *
b nanmeTo = "c:\tenpfolder\" *
o (b) The destination file will be overwitten if it *
tox exi sts *
' * *
' * Dim nameFrom As String, naneTo As String *
' * Dim avFileCopy As Integer *
TR— *
Public Function avFil eDel ete(nane)
TE— *
' * PURPCSE: DELETE A FILE *
TR— *
" * G VEN nane = nanme of file to be deleted, if the file *
' is not in the current folder a conplete *
b pat hnane nust be specified *
TR— *
b RETURN: avFileDelete = error flag (0 = no error, 1 = error) *
' * *
' * Dimname As String *
' * DimavFileDelete As |nteger *
TR— *
Public Sub avFil eD al ogPut (def name, aPattrn, Heading, fileNane)
T *
o PURPCSE: TO CREATE A FILE USING A NAME THAT THE USER SPECI FIES *
' * *
' * G VEN def Nane = default filename to be displayed *
b aPattrn = defines the pattern for simlar files. Use *
b an asterisk as a wild card character, for *
v exanple: *.ave or *.* *
b Heading = nessage box caption *
' * *
o RETURN: fileName = nanme of file to be created, if the user *
b Cancel s the command, fileName will be set *
b to a blank character (a single space) *
TR— *
tox Dim defName As String, aPattrn As String, Heading As String *
" * DimfileNane As String *
' * *
Public Sub avFileDial ogReturnFiles(patrns, |abels, heading, deflndex,
fileList)
TR— *
' * PURPCSE: GET A LIST OF FILE NAMES WHI CH THE USER SELECTS *
' * *
tox G VEN: patrns = list of file patterns that can be displayed *
o | abel s = list of labels corresponding to the list of *
tox patterns *
b Heading = nessage box caption *
tox defIndex = index into pattern list denoting the *
b default pattern to be displayed *
' * *
tox RETURN: fileList = list of file names, of string type, that *
b were selected by the user, if the user *
tox Cancels the command this list will be enpty *
TR— *
" * Dim patrns As New Collection, labels As New Collection *
' * Dim Heading As String, deflndex As Long *
" * DimfileList As New Collection *
' * *
Public Function avFileExists(name) As Bool ean
' * *
' * PURPCSE: DETERMNE |IF A FILE EXI STS OR NOT *
TR— *

D-24 Avenue Wraps

" * G VEN nane = nanme of file to be checked, if the file *
o is not in the current folder a conplete *
o pat hnanme nust be specified *
' * *
o RETURN: avFil eExi sts = existence flag (true = yes, false = no) *
' * *
' * Dimname As String *
' * Dim avFil eExi sts As Bool ean *
' * *
Public Function avFindDoc(nane) As Long

' * *
' * PURPCSE: GET THE INDEX FOR A SPECI FI ED LAYER OR TABLE NAME *
' * *
' * dVEN nanme = nane of thene or table to be found *
' * *
tox RETURN: avFindDoc = index into Table of Contents of the I|ayer *
b or table, -1 if not found, index values *
tox begin at 0 and increase sequentially by 1 *
' * *
' * NOTE: (a) If the theme or table is found, the gl obal *
tox ugLayer or ugTable will be defined. If a theme is *
tox found, ugLayer will be defined, if a table is *
o found ugTable will be defined. If nothing is found *
tox bot h ugLayer and ugTable will be set to NOTH NG *
o (b) If the DLL version of Avenue Waps is being used, *
tox the properties Layer and Table should be used to *
o access the uglLayer and ugTable globals. That is, *
v to process a |ayer: *
b al ndex = avFi ndDoc("Layer X") *
v I f(al ndex <> -1)Then *
X Set pLayer = avwr aps. Layer *
' End |f *
v to process a table: *
b al ndex = avFi ndDoc(" Tabl eX") *
v I f(al ndex <> -1)Then *
b Set pTable = avw aps. Tabl e *
' End |f *
o (c) The index value for a table will have the nunber *
tox of layers added to it, so that we know a table is *
o bei ng processed. The nunber of layers can be found *
tox by using pMap. LayerCount, where pMap is an | Map *
b obj ect . *
' * *
' * Dimname As Variant *
' * Dim avFindDoc As Long *
' * *
Public Function avFTabExport(aThene, aFileName, aC ass, selRecrds,

Optional addToDoc) As |Fields

' * *
' * PURPCSE: EXPORT A THEME TO CREATE A NEW THEME OR TABLE *
' * *
' * G VEN aThene = nanme of the thene to be exported *
b aFi | eNane = nanme of the theme or table to be *
v created, if the name does not contain a *
' conpl ete pathnane the current working *
' directory will be used, some exanples *
b of nane include: *
b c:\project\test\athenme *
b c:\project\test\atheme. shp *
tox at heme *
' at hene. shp *
b the name can or can not contain the *
b extensions .dbf, .txt or .shp *
tox ad ass = type of theme or table to be created *
tox dBase *
' TEXT *
tox SHAPE *
o sel Recrds = indicates if the selected features are *
' to be exported *

Appendix D Listing of Avenue Wraps™ D-25

true = export selected features only
false = export all features
addToDoc = optional argunent indicating if the new

thene or table is to be added to the
map (the default is true)

true = add new thenme or table to map
false = do not add

RETURN: avFTabExport = IFields object for the theme or table
that was created
NOTE: (a) if the theme or table to be created, aFileNaneg,
exists on disk, it will be deleted before the

exporting is performed w thout informng the user
(b) if the theme or table to be created is to be added
to the map and it currently exists in the map, it
will be renmoved prior to deleting the existing
disk file(s) as well as performng the export
(c) if selected features are to be exported and there
are no selected features, the entire theme will be
exported
(d) if the thene can not be exported for any reason
what so ever, avFTabExport will be set to NOTH NG
(e) if the new thene or table is not to be added to
the map, avFTabExport will be set to NOTH NG
(f) use the subroutine avlnvalidateTOC to refresh the
Tabl e of Contents
(g) aTherme and aFileNanme can not be identical, they
must be different, if not an error is generated

Dim aTheme As String, aFileName As String, aCass As String
Di m sel Recrds As Bool ean, addToDoc As Bool ean
Di m avFTabExport As |Fields

I T T N I

Public Function avFTabMakeNew(aFileNane, aclass) As |FeaturelLayer

PURPCSE: CREATE A NEW SHAPEFI LE

G VEN: aFi | eName = nane of the shapefile to be created,
if the name does not contain a
conpl ete pathname the current working
directory will be used, sone exanples
of nane include:
c:\project\test\l_0Oln
c:\project\test\l_0Oln.shp
I_0Oln
| _0ln.shp
the name can or can not contain the
extension .shp
ad ass = type of shapefile to be created

PO NT
MULTI PO NT
POLYLI NE
POLYGON
PO NTM
MULTI PO NTM
POLYLI NEM
POLYGONM
PO NTZ
MULTI POl NTZ
POLYLI NEZ
POLYGONZ

RETURN: avFTabMakeNew = feature layer object that is created

NOTE: (a) Three fields called FID, SHAPE and ID will be
created by this routine, the function avAddDoc can
be used to add the shapefile to the map, if need

be

ok ok ok ko kR R R R 3k 3k F 3k 3k X 3k ok X ok kX % ok kb ok F o F X X T ¥ X ok % K ok ok F ok F 3k kX K ok ok ¥ ok ok * ¥ Ok x F K oy F 3k ok 3k ok ¥ * *

ok ok R Rk ok ok o Sk Sk 3k 3k 3k R Rk 3k b b k% % 3k %k %k ¥ ¥ 3k 3k F F

D-26 Avenue Wraps

o (b) If the shapefile to be created exists on disk, the *
o routine will abort the existing shapefile will not *
tox be overwitten *
TE— *
" * DimaFileNane As String, aClass As String *
' * Dim avFTabMakeNew As | Feat urelLayer *
TE— *
Public Sub avGetActiveDoc(pMcApp As | MApplication,
pmxDoc As | MkDocunent, _
pActiveView As |ActiveView, pMap As | Map)

' *
' PURPOSE: GET THE CURRENT DOCUMENT OR FOCUS MAP *
0 *
' G VEN: not hi ng *
' *
' RETURN: pMkApp = the application *
' pmxDoc = the docunent *
' pActiveView = the active view *
' pMap = the focus nap *
' *
' Dim pMKApp As | MkApplication, pnmxDoc As | MDocunent *
' Di m pActiveView As |ActiveView, pMVap As | Map *
' *
Public Sub avGetActiveThenes(pnxDoc As | MDocunment, TheneslList)

0 *
' PURPCOSE: GET A LIST OF THE ACTIVE OR SELECTED THEMES *
0 *
' G VEN: pmxDoc = the active view *
' *
' RETURN: ThemesLi st = list of thenes *
' *
' Di m pmxDoc As | MkDocunent *
' Di m ThemesLi st As New Col | ection *
0 *

ic Function avGetBaseNane(aPath) As String
PURPCSE: CGET THE BASE NAME THAT APPEARS IN A PATH NAME
G VEN: aPat h = the full path nane to be processed
RETURN: avCet BaseName = base name appearing in a path nanme

including the filename extension, if
one is present in the base nane

gi ven return

c:\test\vb\aFile.shp aFile.shp
c:\test\vb\aFile aFile
c:\test\vb\ vb
c:\test\vb vb
c:\a a
c:\

aFile.txt aFile.txt

Second from last exanple (c:\) yields
an enpty string ("")

Dim aPath As String
Di m avGet BaseNanme As String

F Ok K ok o K % K ok x FTT K ok ok K K ok ok K K ok K K ok ok % F x K ¥ F % KT F * F F ok Kk ok F x KT ok ok % F F * F ok k * *F % X
I N ST I R I S T I

Public Function avGetBaseNane2(aPath) As String

0 *
' PURPCSE: GET THE BASE NAME THAT APPEARS IN A PATH NAME M NUS *
' ANY EXTENSI ON THAT MAY APPEAR | N THE BASE NAVMVE *
0 *
' G VEN: aPat h = the full path name to be processed *
0 *
' RETURN: avCet BaseName2 = base nane appearing in a path nane *
' wi thout the filenane extension *
' gi ven return *
' c:\test\vb\aFile.shp aFile *
0 *

c:\test\vb\aFile aFile

Appendix D Listing of Avenue Wraps™ D-27

c:\test\vb\ vb
c:\test\vb vb
c:\a a

c:\

aFile.txt aFile

Second from last exanple (c:\) yields
an enpty string ("")

Dim aPath As String
Di m avGet BaseNanme2 As String

* % ok k% % ok ok X F

L T

*

Public Sub avGetC assifications(thelegend As |FeatureRenderer,
cl assLi st)

PURPCSE: TO GET A LIST OF THE CLASSES USED IN A CLASSI FI CATI ON
G VEN: theLegend = legend to be processed
RETURN: classList = list of classifications

Di m t heLegend As | Feat ureRenderer
Di m cl assList As New Coll ection

Pu

ic Function avGetC assType(thelegend As |FeatureRenderer) As Strin

PURPCSE: DETERM NE THE TYPE OF CLASSI FI CATION THAT HAS BEEN
USED TO CREATE A LEGEND

Q
)

t heLegend = legend to be processed

RETURN: avCGet O assType = type of classification used in the

generation of a legend (renderer)
Manual (Si ngl eSymbol and Uni que)

Def i nedl nt erval

Equal | nt er val

Nat ur al Br eaks

Quantile

St andar dDevi at i on

Di m t heLegend As | Feat ureRenderer
Di m avGet O assType As String

ok ok 3k ok Ok ok kX % ok oy F X ¥ 3k 5 KT F ok F ok F ok F oy F
® Ok ok %k ok Ok Ok F k ok ok X ok F K F F(Q * ¥ ¥ ok *F * * * * *

Public Sub avGetDisplay(pActiveView As |ActiveView, _
pScreenDi spl ay As | ScreenDi spl ay,
pDT As | D splayTransfornmation)

' * *
' * PURPOSE: GET THE CURRENT FOCUS MAP DI SPLAY *
TR— *
' * G VEN pActiveVi ew = the focus nmap active view *
' * *
' * RETURN: pScreenDi splay = the screen display *
tox pDT = the screen display transformation *
TR— *
oox Dim pActiveView As |ActiveView, pScreenDisplay As |ScreenDisplay *
' * Dim pDT As |D splayTransfornmation *
TR— *
Public Sub avGetDisplayFlush()

TE— *
' * PURPCSE: SCRIPT TO MAKE SURE THE DI SPLAY IS UP TO DATE BY *
tox FORCI NG ANY BUFFERED DRAWS TO BE DI SPLAYED *
TR— *
' * dVEN not hi ng *
' * *
' * RETURN: not hi ng *
TR— *
Public Function avGetEnvVar (aPath)

TE— *
' * PURPCSE: GET THE FULL PATH FOR AN ENVI RONMENT VARI ABLE *
TR— *

D-28 Avenue Wraps

" * G VEN aPat h = nanme of the environnent variable name *
tox to be processed *
' * *
o RETURN: avGet EnvvVar = full path associated with the variable *
v gi ven return *
tox ARCHOVE C:\ ARCA S\ ARCEXE81 *
v TMP C: \ W NDOWB\ TEMP *
v ABC *
' The | ast exanple yields an enpty string *
tox (""), assuming the variable ABC does not *
tox exi st *
TE— *
"' * DimaPath As String *
' * DimavGetEnvVar As String *
TR— *
Public Function avGetExtension(aPath) As String
TR— *
' * PURPCSE: GET THE FILE EXTENSION IN A BASE NAME OF A PATH NAME *
TR— *
' * G VEN aPat h = the full path name to be processed *
TR— *
' * RETURN avCet Extension = the fil ename extension *
v gi ven return *
b c:\test\vb\aFile.shp shp *
tox c:\test\vb\aFile *
b c:\test\vb\ *
b c:\test\vb *
tox c:\a *
v c:\ *
' aFile.shp shp *
b Only the first and |ast exanples *
b yield non-enpty strings ("") *
' * *
"' * DimaPath As String *
' * Dim avGetExtension As String *
TR— *
Public Function avGetAlias(col) As String
' * *
o PURPCSE: GET THE ALIAS ASSIGNED TO A FIELD FOR A LAYER OR TABLE *
TR— *
' * GdVEN col = index value representing the field for *
b which an alias is to be retrieved *
TR— *
' * RETURN: avCGetAlias = the alias assigned to the field *
TR— *
o NOTE: The current layer/table is processed, the subroutines *
o avCet FTab or avCetVTab can be used to establish the *
v current layer or table *
' * *
' * Dimcol As Long *
' * DimavCGetAlias As String *
TR— *
Public Sub avCetFeatData(pnxDoc As | MDocunent, _

theTheme, theCbjld, theFeature As |Feature, _

theShape As | CGeonetry, shapeType As esri GeonetryType)

TR— *
' * PURPCSE: GET THE FEATURE DATA G VEN A THEME AND AN OBJECT ID *
TR— *
" * G VEN pmxDoc = the active view *
tox t heThene = the theme to be processed *
o theObj I d = the object id of the desired feature *
TR— *
" * RETURN: theFeature = the feature *
b t heShape = the geonetry of a feature *
' shapeType = the shape type of a feature *
TR— *
' * Dim pnxDoc As | MkDocunent *
' * DimtheThene As Variant, theOojld As Long *
' * DimtheFeature As | Feature *

Appendix D Listing of Avenue Wraps™ D-29

' * DimtheShape As | Geonetry *
' * Dim shapeType As esri GeonetryType *
TE— *
Public Sub avGetFeature(pmxDoc As | MDocunment, _
theTheme, theObjld, theFeature As | Feature)
' * *
' * PURPCSE: TO GET THE FEATURE G VEN A THEME AND AN OBJECT |ID *
TE— *
' * G VEN pmxDoc = the active view *
b t heThene = the theme to be processed *
tox theObj I d = the object id of the desired feature *
' * *
" * RETURN: theFeature = the feature *
TE— *
b NOTE: (a) Use avGetTableRow if a table is to be processed *
o (b) To get the geonetry or shape of the feature use *
o the following command after calling this routine *
b Set theShape = theFeature. Shape *
' where theShape is an | Geonetry object *
' * *
' * Dim pnxDoc As | MkDocunent *
' * DimtheThene As Variant, theOjld As Long *
' * DimtheFeature As | Feature *
TR— *
Public Sub avGetFieldNanmes(thel egend As |FeatureRenderer, naneList)
T~ *
" * PURPCSE: GET THE FIELD NAMES USED TO CLASSIFY A THEME *
' * *
" * dVEN theLegend = legend to be processed *
TR— *
o RETURN: naneLi st = list of the field nanes that were used in *
tox a classification (enpty for SingleSynbol *
' | egends or any other type of |egend that *
b does not require a field nane) *
TR— *
' * Dim theLegend As | FeatureRenderer *
' * Dim nanmeList As New Collection *
' * *
Public Sub avGetFields(theVlab As |IFields, thelist)
T *
" * PURPCSE: GET A LIST OF FIELD NAMES FOR A LAYER OR TABLE *
' * *
" * G VEN thevVTab = field list for the thene or table *
TR— *
o RETURN: theList = list of field nanes for an attribute table, *
b these are not the alias names for the fields *
' * *
' * DimtheVTab As |Fields *
' * DimtheList As New Collection *
TR— *
Public Sub avGet FTab(pnxDoc As | MDocunent, theThene,
theFTab As I Fields, _
t heFeatured ass As | Featured ass,
theLayer As | FeaturelLayer)
TR— *
b PURPCSE: GET THE ATTRI BUTE TABLE, FEATURE CLASS AND ASSCCI ATED *
b LAYER FOR A SPECI FI ED THEME *
TR— *
' * G VEN pmxDoc = the active view *
tox t heThene = the thenme to be processed *
' * *
' * RETURN t heFTab = the attribute table for the theme *
o theFeatureClass = the feature class for the theme *
tox t heLayer = the associated layer for the thene *
TR— *
' * NOTE: If a table, rather than a theme, is specified the *
b t heFeatureC ass and thelLayer will be set to Nothing *
b while theFTab object will reflect the attributes for *
tox the table *

D-30 Avenue Wraps

' * *
' * Dim pnxDoc As | MkDocunent *
' * DimtheThene As Variant *
v Dim theFTab As I|Fields, theFeatureC ass As |Featured ass *
' * DimtheLayer As |FeaturelLayer *
TE— *
Public Sub avGetFTabl Ds(pmxDoc As | MDocunent, theThene,
t heRecsLi st)

TE— *
' * PURPCSE: GET A LIST OF THE OBJECT IDS IN A LAYER *
TE— *
' * G VEN pmxDoc = the active view *
b t heThene = the theme to be processed *
' * *
o RETURN: theRecsList = the list of ODs for the theme, this *
v list will include all ODs for all of *
tox the features in the thene *
TR— *
' * Dim pnxDoc As | MkDocunent *
' * DimtheThene As Variant *
" * DimtheRecsList As New Collection *
' * *

Public Sub avGetFTabl Ds2(pnxDoc As esri Core. | MDocunent, theThene,
t heRecsArray)

PURPGCSE: BU LD AN ARRAY OF THE OBJECT IDS IN A LAYER

G VEN: pmxDoc = the active view
t heThene = the thenme to be processed
RETURN: theRecsArray = the array of ODs for the thenme, this
array will include all ODs for all of

the features in the thene

NOTE: (a) The first O D appears in the first elenent of the
array and can be accessed as shown bel ow
firstOD = theRecsArray(1)
(b) To determine the nunber of elements in the array
use the function, UBound, as shown bel ow
total | Ds = UBound(theRecsArray)
(c) If the array can not be built, the nunber of
elements in the array will be one and the value of
the first element in the array will be set to -1
(d) Arrays process faster than lists, as such use this
subroutine rather than avGetFTabl Ds when the |ayer
contains a large nunber of features

Di m pmxDoc As | MkDocunent
Di m t heTheme As Vari ant
Di m theRecsArray() As Long

k kK k ok ok ok k% ok K ¥ ok K ¥ o F ok ok oy F ok X F x X

$ Ok R kR R ok ok ok ok kO F O 3k 3k Ok k% % % ok ok ¥ F

*

Public Sub avGetGeonetry(pnxDoc As | MDocunent, _
theTheme, theQbjld,theShape As | Geonetry)

PURPCSE: GET THE GEOMETRY OF A FEATURE G VEN I TS THEME AND
OBJECT ID
G VEN: pmxDoc = the active view

theTheme = the thene to be processed
theObjld = the object id of the desired feature

RETURN: t heShape = the geonetry of a feature

Di m pmxDoc As | MkDocunent
Dim theTheme As Variant, theCbjld As Long
Di m t heShape As | Geonetry

L I R R A T T T VA
® % ok ok Ok Ok F Ok Ok ¥ ¥ ok X *

Appendix D Listing of Avenue Wraps™ D-31

Public Sub avGet G aphiclList(pCurGaLyr As |G aphicsLayer, gralist)
*

0 *
' PURPCSE: TO GET A LIST OF THE GRAPHICS IN A GRAPHI CS LAYER *
' *
' G VEN: pCurGraLyr = the graphics |ayer containing the user *
' programmed graphics *
0 *
' RETURN: gralLi st = list of graphic elements in the graphics *
' | ayer *
0 *
' Di m pCur GraLyr As |G aphicsLayer *
' Di m graLi st As New Col | ection *
' *
Public Function avGetLayerlndx(theTheme) As Long

0 *
' PURPCSE: TO DETERM NE THE | NDEX OF THE LAYER OR TABLE WE ARE *
' DEALI NG W TH *
0 *
' G VEN: t heThene = the layer or table to be processed *
0 *
' RETURN: avCet Layerlndx = index of the layer or table *
0 *
' Di m theTheme As Vari ant *
' Di m avGet Layer| ndx As Long *
' *

Public Sub avGetlLayerType(pSelected As |Unknown, aNane, aType)

PURPCSE: TO DETERM NE THE TYPE OF LAYER WE ARE DEALING W TH
G VEN: pSel ected = the data |ayer object to be processed

RETURN: aNare = nane of the data |ayer object (uppercase)
aType = type of data layer object

= unknown

standal one table

raster |ayer

tin layer

annotation |ayer

feature |ayer

CAD annotation |ayer

7 = CAD | ayer

0
1
2
3
4
5
6

NOTE: This subroutine will generate an error nmessage if the
object that is passed in is a standal one featureclass
in an SDE geodat abase. The solution at this time is
to put the standal one featureclass into a dataset in

t he SDE geodat abase.

Di m pSel ected As | Unknown
Dim aNane As Variant, aType As Integer

* K K ok % % ok o K K ok ok ok ok K K ok o F ox k x KTk F F k x K % K K oz FT K ok ok K Ok x K * 4 ¥

L T T R I

*

Public Sub avGetLegend(pmkDoc As | MDocunent, theTheneg,
alLegend As | FeatureRenderer)

PURPGCSE: TO GET THE LEGEND THAT |S ASSOCI ATED WTH A THEME

G VEN: pmxDoc = the active view
theTheme = theme to be processed

RETURN: aLegend = thene |egend
Di m pmxDoc As | MkDocunent

Di m t heTheme As Vari ant
Di m aLegend As | FeatureRenderer

EE I R T I VA

L O A

*

Public Function avGetLegendType(thel egend _
As | FeatureRenderer) As String

' * *

' * PURPGCSE: DETERM NE THE TYPE OF LEGEND IN USE *

D-32 Avenue Wraps

' *
' G VEN: t heLegend = legend to be processed *
0 *
' RETURN: avCet LegendType = type of |legend (renderer) in use *
' UNI QUE : Uni que Val ue *
' S| MPLE : Sinple *
' SCALE : Scal eDependent *
' PROPORTI ONAL : Proportional Synbol *
' Bl VARI ATE : Bivariate *
' CHART : Chart *
' CLASS : Class Breaks *
' DOT : Dot Density *
' *
' Di m t heLegend As | Feat ureRenderer *
' Di m avGet LegendType As String *
0 *
Public Function avGetMaxQO D(pnxdoc As | MDocunent, theThene) As Long

' *
' PURPOSE: GET THE LARGEST O D IN A LAYER OR TABLE *
0 *
' G VEN: pmxDoc = the active view *
' t heThene = the thene or table to be processed *
0 *
' RETURN: avCetMaxO D = largest OD in the thene or table *
0 *
' Di m pmxDoc As | MkDocunent *
' Di m theTheme As Vari ant *
' Di m avGet MaxO D As Long *
0 *
Public Sub avGetName(aTitle)

0 *
' PURPOSE: TO GET THE CAPTION OF THE APPLI CATI ON *
0 *
' G VEN: not hi ng *
' *
' RETURN: aTitle = nane of the application appearing in the *
' upper left corner of the application w ndow *
0 *
' Dim aTitle As String *
' *

Pu

ic Function avGetNunCl asses(thelegend As |FeatureRenderer) As Long
PURPCSE: DETERM NE THE NUMBER OF CLASSES IN A LEGEND
G VEN: t heLegend = legend to be processed
RETURN: avCGet NuntCl asses = nunber of classes in the |egend

Di m t heLegend As | Feat ureRenderer
Di m avGet NunCl asses As Long
Public Function avGetNunRecords(pmxDoc As | MDocunent, theThene) As Lo

PURPCSE: GET THE NUMBER OF RECORDS IN A LAYER OR TABLE

G VEN: pmxDoc = the active view
t heThene = the thene or table to be processed
RETURN: avGet NunRecords = nunber of records in theme or table

Di m pmxDoc As | MkDocunent
Di m t heTheme As Vari ant
Di m avGet NunRecords As Long

L R T I R R

e
c

* Ok 4 KT K ok K ok K 4 K ok K F ox FTT R K ok K g K ok K % KT K ok K ok x F K ok x KT R K ok % F x ok x ok % % KT K ok k F K ok K ok F ok K ok x4 F x *

lic Function avGCetPalette(pmkDoc As | MDocunent) As |StyleGallery

PURPCSE: GET THE VAR QUS PALETTES AVAILABLE |IN THE APPLI CATI ON

Y

G VEN: pmxDoc = the active view

Appendix D

Listing of Avenue Wraps™

D-33

TE— *
' * RETURN: avCet Palette = the available style galleries *
b Ref erence Systens 12 itens *
tox Shadows 12 items *
b Area Patches 8 itens *
tox Li ne Patches 9 itens *
b Label s 20 items *
tox North Arrows 97 itens *
tox Scal e Bars 11 items *
v Legend I|tens 18 items *
tox Scal e Text 7 itens *
v Col or Ranps 78 itens *
tox Bor ders 16 items *
v Backgr ounds 18 items *
tox Col ors 120 items *
v Fill Synbols 53 itens *
v Li ne Synbol s 86 itens *
b Mar ker Synbol s 114 items *
v Text Synbols 35 itens *
TR— *
tox NOTE: Depending upon the installation, the total nunber of *
o galleries and items within each gallery may vary *
' * *
' * Dim pnxDoc As | MkDocunent *
' * DimavCetPalette As IStyleGllery *
TR— *
Public Function avGetPathNane(aPath) As String

' * *
' * PURPCSE: GET THE PATH NAME THAT APPEARS IN A STRING *
TR— *
' * G VEN aPat h = the full path nane to be processed *
TR— *
o RETURN: avCGet Pat hName = path name appearing in a string mnus *
b the last conponent in the string *
v gi ven return *
tox c:\test\vb\aFile.shp c:\test\vb *
b c:\test\vb\aFile c:\test\vb *
tox c:\test\vb\ c:\test *
tox c:\test\vb c:\test *
b c:\a c:\ *
v c:\ *
' aFile.shp *
' The last two exanples will yield enpty *
v strings ("") *
TR— *
" * DimaPath As String *
" * Dim avGetPathNane As String *
' * *
Public Function avCetPrecision(theFTab As |Fields, theField) As Long
T *
' * PURPCSE: GET THE PRECISION OF A FIELD *
TR— *
' * G VEN t heFTab = the FTab or VTab to be processed *
tox t heFi el d = index into FTab or VTab representing *
b the field to be processed *
TR— *
o RETURN: avCGet Precision = nunber of digits to the right of the *
v deci mal poi nt *
' * *
o NOTE: This function always returns O for fields contained in *
v a personal geodat abase *
TR— *
' * DimtheFTab As |Fields, theField As Long *
' * Dim avGetPrecision As Long *
TR— *
Public Sub avGetProjectNanme(aTitle)

' * *
' * PURPCSE: GET THE NAME OF THE CURRENT DOCUMENT *
L

D-34 Avenue Wraps

' * GJdVEN not hi ng *
TE— *
b RETURN: aTitle = the name of the current document, this wll *
tox include the .nxd extension (i.e. sanple.nxd) *
' * *
"' * DimaTitle As String *
TE— *
Public Sub avGCet Sel ected(pnxDoc As | MDocunent, sel GraphList)

' * *
' * PURPCSE: GET THE SELECTED GRAPHI C TEXT |IN THE MAP *
TE— *
' * G VEN pmxDoc = the active view *
TE— *
o RETURN: sel GraphList = list containing the selected graphic *
tox text elenents *
TE— *
' * Dim pnxDoc As | MkDocunent *
" * Dim sel GaphList As New Coll ection *
TR— *
Public Sub avGCet Sel ect edExtent(pnmxDoc As | MDocunent, _

t heThenme, theRect As |Envel ope)

' * *
b PURPOSE: GET THE ENCLOSI NG RECTANGLE FOR THE SELECTED SET OF A *
b THEME, OR THE ENCLOSI NG RECTANGLE FOR THE ENTI RE THEME *
v |F THE SELECTED SET |S EMPTY (NO SELECTED FEATURES) *
' * *
' * G VEN pmxDoc = the active view *
b theTheme = the thene to be processed *
TR— *
tox RETURN: t heRect = the enclosing rectangle enconpassing the *
b selected features, or all of the features, *
o if no features are selected *
TR— *
' * Dim pnxDoc As | MkDocunent *
" * DimtheTheme As Variant *
' * DimtheRect As |Envel ope *
TR— *

Public Sub avGetSelection(pmkDoc As | MDocurment, theThene,
psTabl eSel As | Sel ectionSet)

PURPGCSE: GET THE SELECTED SET FOR A FOR A LAYER OR TABLE

G VEN: pmxDoc = the active view
t heThene = the thene or table to be processed
RETURN: psTabl eSel = the selection set for the thene

Di m pmxDoc As | MkDocunent
Di m theTheme As Vari ant
Di m psTabl eSel As | Sel ecti onSet

Public Sub avGetSelectionC ear(pmDoc As | MDocurment, theTheme, theRcrd)
PURPCSE: REMOVE A RECORD FROM THE SELECTED SET FOR A LAYER OR
TABLE
G VEN: pmxDoc = the active view
theTheme = the theme or table to be processed
theRerd = the record to be renoved from the selection

RETURN: not hi ng

Di m pmxDoc As | MkDocunent
Di m t heTheme As Vari ant
DimtheRcrd As Long

® Ok ok R R kR Ok R % ok % X kO F Ok Ok Ok K K ok X F F F

Pu

lic Sub avGetSelectionlDs(psTableSel As |SelectionSet, selRecsList)

*

w KT Ok ok k F K K K % ok *k F F x KT F *k F ok K x F & ¥ F x X

PURPGCSE: BU LD A COLLECTION OF O DS FROM A SELECTI ON SET

Appendix D Listing of Avenue Wraps™ D-35

G VEN: psTabl eSel = the selection set for a thene or table
RETURN: sel RecsList = the list of ODs for the selection set

Di m psTabl eSel As | Sel ecti onSet
Di m sel RecsList As New Col | ection

* ok ok ok x * ox K
L T N I

Public Sub avGetSelectionlDs2(psTableSel As esriCore.| SelectionSet,
sel RecsArray)

PURPOSE: BU LD AN ARRAY OF O DS FROM A SELECTI ON SET
G VEN: psTabl eSel = the selection set for a thene or table

RETURN: sel RecsArray = the array containing the ODs for the
sel ection set

NOTE: (a) The first O D appears in the first elenent of the
array and can be accessed as shown bel ow
firstOD = sel RecsArray(1)
(b) To determine the nunber of elements in the array
use the function, UBound, as shown bel ow
total | Ds = UBound(sel RecsArray)
(c) If the array can not be built, the nunber of
elements in the array will be one and the value of
the first element in the array will be set to -1
(d) Arrays process faster than lists, as such use this
subroutine rather than avGetSel ectionlDs when the
selection set is large

Di m psTabl eSel As | Sel ecti onSet
Di m sel RecsArray() As Long

® ook ok Ok ok % % ok ok ok Ok ¥ ok Ok ok x K K g F g Ok % K
I R I S T R I S

Public Sub avGet Sel Features(pnxDoc As | MDocunent, _
t henelLi st, sel Mode, sel Thnlist, sel ReclLi st

PURPCSE: PRESERVE THE THEMES AND RECORD NUMBERS OF THEMES W TH
SELECTED FEATURES

G VEN: pmxDoc = the active view
themeList = list of themes to be processed
sel Mode = node of selection
0 = all features
1 = point features
2 = polyline features
3 = polygon features
4 = polyline and pol ygon features
10 = sanme as 0 and include thenes that
do not have selected features
RETURN: sel ThnList = list of themes with selected features
sel RecList = list of selected features record nunbers
NOTE: (a) structure of sel Thnlist is:

Item 1: nane of thenme 1
Item 2: nunber of selected features in thene 1
Item 3: nanme of thene 2
Item 4: nunber of selected features in thene 2
Repeat Itens 1 and 2 for each thene
(b) structure of sel RecList is:
Item 1: selected feature 1 OD in theme 1
Item 2: selected feature 2 OD in theme 1
Repeat Item 1 for each selected feature in thene 1
Item 3: selected feature 1 OD in theme 2
Item 4: selected feature 2 OD in theme 2
Repeat Item 3 for each selected feature in thene 2

$ ok ok R R kR ok ok ok %k ok %k kO 3k 3k Ok F k% % ok ok Ok % % %k k¥ ¥

L T v T R I SRV

Di m pmxDoc As | MkDocunent

D-36 Avenue Wraps

' * Dim theneList As New Col |l ection, selMde As Integer *
o Dim sel ThnList As New Collection, selRecList As New Collection
' * *
Public Function avGetShapeType(pmxDoc As | MDocunent, _
theThenme) As esri GeonetryType
TE— *
' * PURPCSE: CGET THE DEFAULT SHAPE TYPE FOR A THEME *
' * *
' * G VEN pmxDoc = the active view *
b t heThene = the theme to be processed *
TE— *
' * RETURN: avCet ShapeType = the default shape type *
' * *
' * Dim pnxDoc As | MkDocunent *
" * DimtheTheme As Variant *
' * Dim avGet ShapeType As esri GeonetryType *
TE— *
Public Sub avGetTabl eRow(pnxdoc As | MDocunent, theTable,
theObjld, theRow As | Row)
TR— *
o PURPCSE: GET THE ROW G VEN A TABLE AND AN OBJECT ID OF A RECORD *
v IN THE TABLE *
TR— *
' * G VEN pmxDoc = the active view *
b theTable = the table to be processed *
tox theObjld = the object id of the desired record *
TR— *
' * RETURN: t heRow = the row *
TR— *
' * NOTE: Use avGetFeature if a thene is to be processed *
TR— *
' * Dim pnxDoc As | MkDocunent *
' * DimtheTable As Variant, theOjld As Long *
' * DimtheRow As | Row *
' * *
Public Sub avGetTabl es(pnmxdoc As | MDocunent, naneList, tablelList)
T *
' * PURPCSE: GET A LIST OF THE TABLES IN THE DOCUMENT *
TR— *
" * G VEN pmxDoc = the active view *
' * *
o RETURN: naneLi st = list of names for the tables which exist *
tox in the docunent *
o tableList = list of |Table objects that were found *
' * *
o NOTE: The nunmber of itenms in naneList and tableList will be *
o the sane. The itenms in naneList sinply reflect the *
tox names of the |Table objects in tablelist *
TR— *
' * Dim pnxDoc As | MkDocunent *
' * Dim naneList As New Collection *
' * DimtableList As New Collection *
TR— *
Public Sub avGetTheneExtent(pnxDoc As | MDocunent, theTheneg,
theRect As | Envel ope)
TR— *
' * PURPCSE: GET THE ENCLCSI NG RECTANGLE FOR A THEME *
' * *
" * G VEN pmxDoc = the active view *
tox theTheme = the thene to be processed *
TR— *
tox RETURN: t heRect = the enclosing rectangle enconpassing all *
o of the features in the thene *
TR— *
' * Dim pnxDoc As | MkDocunent *
" * DimtheTheme As Variant *
' * DimtheRect As |Envel ope *
' * *

Appendix D Listing of Avenue Wraps™ D-37

Public Sub avGet Thenmes(pnxDoc As | MDocunent, opnmpde, TheneslList)
' * *
' * PURPCSE: GET A LIST OF THEMES OR TABLES *
TE— *
' * G VEN pmxDoc = the active view *
b opnode = nmode of operation *
v 0 = find all layers *
tox 1 =find only feature & annotation layers *
tox 2 = find all tables *
b 3 = find only annotation |ayers *
b 4 = find only feature layers *
b 5 = same as 0 except expand group |ayers *
' * *
' * RETURN: ThemesList = list of thenes *
TR— *
' * Dim pnxDoc As | MkDocunent *
" * Dim opnode As |nteger *
' * Dim ThemesList As New Col | ection *
TR— *
Public Sub avGetUni queVal ues(pmxDoc As | MkDocunent, _
t heThenme, aField, aList)

TR— *
' * PURPCSE: GET A LIST OF UNTQUE VALUES FOR A FIELD IN A THEME OR *
v A TABLE *
TR— *
' * G VEN pmxDoc = the active view *
o theTheme = nanme of the theme or table to be processed *
tox aField = nane of the field to be processed *
' * *
' * RETURN: alLi st = list of wunique values for the specified *
v field *
TR— *
' * Dim pnxDoc As | MkDocunent *
' * DimtheThene As Variant, aField As String *
" * DimalList As New Collection *
TR— *
Public Sub avGetVisibl eCADLayers(pnxDoc As | MDocunent, vThenesList)
' * *
o PURPCSE: GET A LIST OF THE VI SIBLE CAD ANNCTATI ON LAYERS AND *
v VI SI BLE CAD LAYERS *
TR— *
' * G VEN pmxDoc = the active view *
TR— *
' * RETURN: vThemesList = list of visible CAD |ayers *
TR— *
' * Dim pnxDoc As | MkDocunent *
' * Dim vThenmesList As New Col | ection *
TR— *
Public Sub avGetVisibleThemes(pmxDoc As | MDocunment, vThemesList)
T~ *
' * PURPCSE: CET A LIST OF THE VISIBLE THEMES *
TR— *
' * G VEN pmxDoc = the active view *
' * *
" * RETURN: vThemesList = list of visible thenes *
TR— *
tox NOTE: (a) Only annotation and feature layers are processed *
o (b) The layer scale threshold nust be satisfied, in *
o addition to the layer being visibile, in order *
o for the layer to be determ ned as being visible *
TR— *
' * Dim pnxDoc As | MkDocunent *
' * Dim vThenmesLi st As New Col | ection *
' * *
Public Sub avGetVTab(pmxDoc As | MDocument, theTheneg,

theVTab As |Fields)
TR— *
" * PURPCSE: GET THE ATTRIBUTE TABLE FOR A LAYER OR TABLE *
' * *

D-38 Avenue Wraps

' * G VEN pmxDoc = the active view *
tox theTheme = the theme or table to be processed *
TE— *
tox RETURN: thevTab = the attribute table for the theme or table *
' * *
' * Dim pnxDoc As | MkDocunent *
" * DimtheTheme As Variant *
' * DimtheVTab As |Fields *
TE— *
Public Sub avGetVTabl Ds(pnmxDoc As | MkDocunent, theTable, theRecsList)

' * *
' * PURPOSE: GET A LIST OF OBJECT IDS FOR A TABLE *
TE— *
' * G VEN pmxDoc = the active view *
b t heTabl e = the table to be processed *
' * *
' * RETURN: theRecsList = the list of ODs for the table *
TR— *
' * Dim pnxDoc As | MkDocunent *
' * DimtheTable As Variant *
' * DimtheRecsList As New Col |l ection *
TR— *

Public Sub avGetVTabl Ds2(pnxDoc As esri Core.| MDocunent, theTable,
t heRecsArray)

PURPGSE: BU LD AN ARRAY OF OBJECT IDS FOR A TABLE

G VEN: pmxDoc = the active view
t heTabl e = the table to be processed
RETURN: theRecsArray = the array of ODs for the table
NOTE: (a) The first O D appears in the first elenent of the

array and can be accessed as shown bel ow
firstOD = theRecsArray(1)
(b) To determine the nunber of elements in the array
use the function, UBound, as shown bel ow
total | Ds = UBound(theRecsArray)
(c) If the array can not be built, the nunber of
elements in the array will be one and the value of
the first element in the array will be set to -1
(d) Arrays process faster than lists, as such use this
subroutine rather than avGetVTabl Ds when the table
contains a |arge nunber of records

Di m pmxDoc As | MkDocunent
Dim theTable As Vari ant
Di m theRecsArray() As Long

$ Ok R Rk kR ok ok % % ok ok k% 3k %k F ¥ ¥ F 3k F

F % o kX X o RTT OF ok kb oy F 3k X x X T ¥ ok ok kX ok sk ok ¥ F k Ok X ok k F x F o F * * F % ¥

'Pu lic Sub avGetW nFonts(aColl))
: PURPCSE: GET A LIST OF THE FONTS | NSTALLED ON THE PC :
: G VEN: not hi ng :
' RETURN: aCol | = an al phabetically sorted list of the fonts *
: that are installed on the conputer :
: Dim aColl As New Collection :
'Pu lic Sub avGetWorkDir(theWrkDir) .
: PURPGCSE: GET THE CURRENT WORKI NG DI RECTCORY :
: G VEN: not hi ng :
: RETURN: thewsrkDir = current working directory :
. *

Dim theWsrkDir As String

Appendix D Listing of Avenue Wraps™ D-39

TE— *
Public Function avG aphicGet Shape(pEl emrent As |El enent) As |Geonetry
TR— *
b PURPOSE: TO GET THE GEOMETRY THAT IS ASSOCIATED WTH A GRAPHIC *
TE— *
" * GdVEN pEl ement = the graphic to be processed *
TE— *
o RETURN: avQ& aphi cGet Shape = geonetry describing the graphic *
TE— *
tox NOTE: This routine will process PEN, MARKER, FILL and TEXT *
b synbols since they all share the |El enment interface *
b For TEXT synbols the geonetry passed back will be that *
o of an inclined rectangle that encloses the text string *
TE— *
' * Dim pEl enent As |El enent *
' * Dim avG aphi cGet Shape As | Geonetry *
TE— *
Public Function avG aphicGetSynbol (aSynlyp, _

pEl enent As | Elenent) As | Synbol
TR— *
o PURPCSE: TO GET THE SYMBOL THAT IS ASSCCI ATED WTH A GRAPHI C *
TR— *
" * G VEN aSynTyp = type of graphic to be assigned *
v PEN : line synbol *
v MARKER : point synbol *
v FI LL : pol ygon synbol *
' pEl ement = the graphic to be processed *
TR— *
o RETURN: avG aphi cGet Synbol = synbol describing the graphic *
b element, its properties such as *
tox its color *
TR— *
' * Dim aSynTyp As String, pEl enent As |Elenment *
' * Dim avG aphi cGet Synbol As | Synbol *
TR— *
Public Sub avGaphiclnvalidate(pEl enent As |Elenent)
' * *
' * PURPCSE: TO REDRAW OR UPDATE A GRAPHI C ELEMENT *
TR— *
tox G VEN: pEl ement = graphic to be redrawn due to a change that *
tox has been made to it *
TR— *
' * RETURN: not hi ng *
' * *
tox NOTE: Use this routine to redraw a graphic that has already *
tox been added to a graphics layer and subsequently *
' nodi fi ed *
' * *
' * Dim pEl enent As |El enent *
TR— *
Public Sub avG aphicListDel ete(pCurGaLyr As |G aphicsLayer)
T~ *
' * PURPCSE: TO DELETE A GRAPHI CS LAYER *
TR— *
tox G VEN: pCurGraLyr = the graphics |ayer containing the user *
v programmed graphics *
TR— *
' * RETURN: not hi ng *
TR— *
tox NOTE: The basic graphics layer can not be deleted, only user *
b created graphics layers can be deleted with this macro *
TR— *
" * Dim pCurGalLyr As |G aphicsLayer *
TR— *
Public Sub avG aphicListEnpty(pCurGaLyr As |G aphicsLayer)
-~ *
' * PURPCSE: TO DELETE THE GRAPHICS FROM A GRAPHI CS LAYER *
TR— *
tox G VEN: pCurGraLyr = the graphics |ayer containing the user *

D-40 Avenue Wraps

tox programred graphics *
TE— *
' * RETURN: not hi ng *
TE— *
toox NOTE: The graphics within the graphics layer is deleted, the *
b graphics layer itself is not deleted so that graphics *
' can be added to the graphics layer at another tine *
TE— *
' * Dim pCurGalLyr As |G aphicsLayer *
TE— *
Public Sub avG aphicSet Shape(pEl ement As |El enment, _
theGeom As | Geonetry)

TE— *
b PURPOSE: TO SET THE GEOMETRY THAT IS ASSOCIATED WTH A GRAPHIC *
' * *
" * G VEN pEl emrent = the graphic to be nodified *
b theGeom = the new geonetry that describes the graphic *
' * *
' * RETURN: not hi ng *
TR— *
o NOTE: The geonetry of the given element is nodified by this *
b routine, so that pElement is different after calling *
b this routine *
' * *
' * Dim pElement As |El ement, theGeom As | Geonetry *
' * *
Public Sub avG aphicSet Synbol (aSynlyp, _

pEl ement As | El ement, pSynbol As | Synbol)
TR— *
' * PURPCSE: TO ASSIGN A SYMBOL TO A GRAPHI C *
TR— *
' * G VEN aSynmTyp = type of graphic to be assigned *
v PEN l'ine synbol *
v MARKER : point synbol *
v FI LL : pol ygon synbol *
b pEl ement = graphic for which the given synbol is to be *
' assigned to *
tox pSymbol = synbol to be assigned to the graphic *
' * *
' * RETURN: not hi ng *
TR— *
' Dim aSynTyp As String, pEl ement As |Elenment, pSynbol As | Synbol *
TR— *
Public Function avG aphi cShapeMake(aSynlyp, _

theGeom As | Geonetry) As |El ement
TR— *
' * PURPCSE: TO CREATE A GRAPHI C SHAPE THAT CAN BE ADDED TO THE *
v GRAPHI CS LI ST *
TR— *
' * d VEN aSynTyp = type of graphic to be created *
' PEN : line synbol *
v MARKER : point synbol *
v FI LL : pol ygon synbol *
tox t heGeom = geonetry describing the graphic *
TR— *
o RETURN: avG aphi cShapevake = the graphic that can be added to *
v the graphics |ayer *
TR— *
' * Dim aSynTyp As String, theGeom As | Geonetry *
' * Dim avG aphi cShapeivake As | El ement *
TR— *
Public Function avG aphicTextGetAngl e(aG aphi cText _
As | El ement) As Doubl e

TR— *
' * PURPCSE: TO GET THE ANGLE ASSCCI ATED WTH A GRAPHI C TEXT *
TR— *
' * G VEN aG aphi cText = graphic text to be processed *
' * *
' * RETURN: aAngl e = graphic text angle (degrees) *

Appendix D Listing of Avenue Wraps™ D-41

' * *
' * Dim aG aphi cText As |El enent *
' * Dim avG aphi cText Get Angl e As Doubl e *
TE— *
Public Sub avGraphicTextGetStyl e(aG aphicText As |El enment, _
aFont, aSize, aBold, altalic, aColor As iColor)
TE— *
b PURPOSE: TO GET THE TEXT STYLE ATTRI BUTES THAT ARE ASSOCI ATED *
v WTH A GRAPHI C TEXT, THIS INCLUDES THE ATTRI BUTES FOR *
tox FONT, SIZE, BOLD, |TALIC AND COLOR *
TE— *
' * GdVEN aG aphi cText = graphic text to be processed *
TE— *
" * RETURN aFont = font name *
b aSi ze = font size *
' aBol d = font style (1 = normal, 2 = bold) *
tox altalic = font style (1 = nornal, 2 = italic) *
b aCol or = font color (color object) *
' * *
' * Dim aG aphi cText As |El enent *
' * DimaFont As String, aSize As Double *
o Dim aBold As Integer, altalic As Integer, aColor As |Color *
TR— *
Public Function avG aphicTextGetSynbol (aG aphicText _
As | El ement) As | Synbol
TR— *
' * PURPCSE: TO GET THE SYMBOL ASSOCI ATED WTH A GRAPHI C TEXT *
' * *
' * GdVEN aG aphi cText = graphic text to be processed *
TR— *
oo RETURN: avQ aphi cText Get Synbol = synbol describing the graphic *
b text, its properties such as *
o font, size, bold, italic and *
' col or *
TR— *
' * Dim aG aphi cText As |El enent *
' * Dim avG aphi cText Get Synbol As | Synbol *
TR— *
Public Function avG aphicText GetText(aG aphicText As |Elenment)
-~ *
b PURPOSE: TO GET THE TEXT STRING ASSOCI ATED WTH A GRAPHIC TEXT *
' * *
' * GdVEN aG aphi cText = graphic text to be processed *
TR— *
' * RETURN: avCG aphi cText Get Angle = the text string *
TR— *
' * Dim aG aphi cText As |El enent *
' * Dim avG aphi cText Get Text As String *
0 *
Public Function avG aphicTextMake(aString, _
theGeom As | Geonetry) As |El ement
TR— *
' * PURPCSE: TO CREATE A GRAPHI C TEXT THAT CAN BE ADDED TO THE *
v GRAPHI CS LAYER *
TR— *
' * G VEN astring = text string that is associated *
v with the graphic text *
tox t heGeom = geonetry describing the graphic *
TR— *
o RETURN: avQG aphi cText Make = the graphic that can be added to *
o the graphics |ayer *
TR— *
' * DimaString As String, theGeom As | Geonetry *
' * Dim avG aphi cText vake As | El enent *
TR— *
Public Sub avG aphicText Set Angl e(aGraphicText As |El enent, aAngle)
TE— *
' * PURPCSE: TO SET THE ANGLE ASSCCI ATED WTH A GRAPHI C TEXT *
' * *

D-42 Avenue Wraps

' * GdVEN aG aphi cText = graphic text to be processed *
v aAngl e = angle to be assigned (degrees) *
TE— *
' * RETURN: not hi ng *
' * *
' * Dim aG aphi cText As |El enent *
' * Dim aAngle As Double *
TE— *
Public Sub avGraphicTextSetStyl e(aG aphicText As |El enment, _

aFont, aSize, aBold, altalic, aColor As iColor)
TE— *
b PURPOSE: TO SET THE TEXT STYLE ATTRI BUTES THAT ARE ASSOCI ATED *
v WTH A GRAPHI C TEXT, THIS INCLUDES THE ATTRI BUTES FOR *
tox FONT, SIZE, BOLD, |TALIC AND COLOR *
' * *
' * GdVEN aG aphi cText = graphic text to be processed *
b aFont = font nane *
tox aSi ze = font size *
' aBol d = font style (1 = normal, 2 = bold) *
tox altalic = font style (1 = nornal, 2 = italic) *
' aCol or = font color (color object) *
TR— *
' * RETURN: not hi ng *
' * *
' * Dim aG aphi cText As |El enent *
' * DimaFont As String, aSize As Double *
o Dim aBold As Integer, altalic As Integer, aColor As |Color *
' * *
Public Sub avG aphi cText Set Synbol (aGraphi cText As |Elenent,

pText Synbol As | Synbol)

TR— *
' * PURPCSE: TO SET THE SYMBOL ASSCOCI ATED WTH A GRAPHI C TEXT *
TR— *
' * G VEN aG aphi cText = graphic text to be processed *
b pText Synbol = synbol describing the graphic text, its *
b properties such as font, size, bold, *
b italic and color *
TR— *
' * RETURN: not hi ng *
TR— *
' * Dim aG aphicText As |Elenment, pTextSynbol As | Synbol *
' * *
Public Sub avG aphicText Set Text (aG aphi cText As |El enment, aString)
T~ *
b PURPOSE: TO SET THE TEXT STRING ASSOCI ATED WTH A GRAPHIC TEXT *
TR— *
' * GdVEN aG aphi cText = graphic text to be processed *
' asString = the text string to be assigned *
TR— *
' * RETURN: not hi ng *
' * *
' * Dim aGaphicText As |El enment, aString As String *
TR— *
Public Function avHasMaGeom As | Geonetry)
TE— *
' * PURPOCSE: TO CHECK |F A GEOVETRY OBJECT HAS AN M ATTRI BUTE *
TR— *
' * G VEN aGeom = geonetry object to be processed *
TR— *
tox RETURN: avHasM = flag denoting if the given geonetry has an M *
' true = it does, false = it does not *
TR— *
" * Dim aCGeom As | Geonetry *
" * Dim avHasM As Bool ean *
TR— *
Public Function avHasZ(aGeom As | Geonetry)
TE— *
' * PURPCSE: TO CHECK |IF A GEOVETRY OBJECT HAS A Z ATTRI BUTE *
' * *

Appendix D Listing of Avenue Wraps™ D-43

" * G VEN aGeom = geonetry object to be processed *
TE— *
tox RETURN: avHasZ = flag denoting if the given geonmetry has a Z *
b true = it does, false = it does not *
TE— *
' * Dim aGeom As | Geonetry *
' * DimavHasZ As Bool ean *
TE— *
Public Sub avinit(mpApp As |Application)

TE— *
o PURPCSE: TO INITIALI ZE THE GLOBAL VARI ABLES THAT ARE USED BY *
v THE AVENUE WRAPS *
TE— *
' * G VEN mpApp = the | Application object *
' * *
' * RETURN: not hi ng *
' * *
o NOTE: This routine needs to be called only once, typically *
tox when the project (*.nxd) is opened or when the *
o extension is initially |oaded. Wien the Avenue Waps *
o are used in a project file (*.nmxd) a call to avlnit *
tox can be made in the OpenDocurment event for the *
b procedure MDocument. In so doing when the project is *
b opened, avlnit will be called to initialize the global *
' variables referenced in avlnit *
' * *
" * Dim mpApp As |Application *
0 *

Public Function avlntersects(aShapel As |Geonetry, _
aShape2 As | CGeonetry) As Bool ean

PURPCSE: TO CHECK |IF TWO SHAPES | NTERSECT EACH OTHER

G VEN: aShapel = base shape
aShape2 = second shape to be intersected with the
base shape
RETURN: avlntersects = intersection state of the input objects
true = intersect, false = do not

Di m aShapel As |Geonetry, aShape2 As | Ceonetry
Di m avl ntersects As Bool ean

Pu

ic Sub avinterval (pnxDoc As |MDocunment, theThene, aField, nunC ass)
PURPCSE: TO SET THE LEGEND THAT IS ASSOCI ATED WTH A THEME
TO BE OF QUANTILE TYPE WTH THE CLASSES DETERM NED BY
USI NG AN EQUAL | NTERVAL METHOD

G VEN: pmxDoc = the active view
theTheme = thenme to be processed
aField = field nane that theme is to be classified
upon
nunCl ass = nunber of classes to be generated

RETURN: not hi ng

NOTE: (a) Divides the features in the thene into nunCl ass
classifications of equal size using the values in
aField. This is only supported for nuneric fields

(b) After a theme has been classified you nmust use
avCet Legend to get the new legend that reflects
the new classification if you wish to manipulate
the labels or synbols in the classification

Di m pmxDoc As | MkDocunent
Dim theTheme As Variant, aField As String
Di m nunCl ass As Long

* ok ok ok Rk ok % % % ok ok K F Ok ok K % ok * Ok ok x ox FT Kk ok K k4 Ok F % ok K oy F
¥ Ok Kk ok ok F ok K K ok ok F F ok K K ok ok F F F K K k(n K *F F K K ok ok K *F * * * ok

D-44 Avenue Wraps

Public Sub avlnvalidateTOC(nane)

T~ *
' * PURPCSE: REFRESH THE TABLE OF CONTENTS *
TE— *
' * G VEN name = nanme of theme or table in the Table of *
tox Contents to be refreshed, if NULL the entire *
b Table of Contents will be refreshed *
' * *
' * RETURN: not hi ng *
' * *
" * Dimname As Variant *
TE— *
Public Sub avlnvSel Features(pmxDoc As | MDocunent, sel Thnlist)

' * *
b PURPOSE: TO REDRAW THE SELECTED FEATURES FOR A SET OF THEMES *
' * *
' * G VEN pmxDoc = the active view *
o sel ThnList = list of themes with selected features *
TR— *
' * RETURN: not hi ng *
TR— *
tox NOTE: Structure of selThnlList is a sequential list with two *
o items per thenme, nane of the thene and the nunber of *
tox selected features in the theme, so that: *
v Item 1: nanme of theme 1 *
tox Item 2: nunber of selected features in thene 1 *
v Item 3: nanme of theme 2 *
tox Item 4: nunber of selected features in thene 2 *
b Repeat Items 1 and 2 for each thene *
' * *
' * Dim pnxDoc As | MkDocunent *
' * Dim sel ThnList As New Col | ection *
TR— *
Public Function avlsCoverage(nane) As Bool ean

T *
' * PURPCSE: DETERM NE IF A LAYER IS A COVERAGE *
TR— *
' * G VEN name = name of input object to be checked *
' * *
o RETURN: avl sCoverage = flag denoting whether the input object *
tox is a coverage or not *
v true = is, false = not *
TR— *
" * Dimname As Variant *
' * Dim avlsCoverage As Bool ean *
TR— *
Public Function avlsEditable(name) As Bool ean

' * *
' * PURPGCSE: DETERM NE |F A LAYER OR TABLE |S EDI TABLE OR NOT *
TR— *
' * G VEN name = nanme of theme or table for which its *
' editability status is to be checked *
TR— *
o RETURN: avlsEditable = editability state of the layer or table *
b true = editable, false = not editable *
TR— *
" * Dimname As Variant *
' * Dim avlsEditable As Bool ean *
TR— *
Public Function avlsFThene(nane) As Bool ean

' * *
b PURPOSE: DETERM NE IF A LAYER IS OF FEATURE LAYER TYPE OR NOT *
' * *
" * G VEN name = nanme of input object for which its *
b feature layer type is to be checked *
TR— *
tox RETURN: avl sFTheme = flag denoting whether the input object *
v is a feature layer or not *
v true = is, false = not *

Appendix D Listing of Avenue Wraps™ D-45

' * *
' * Dimname As Variant *
' * Dim avlsFThene As Bool ean *
TE— *
Public Function avlsJoined(aVTab, updSelFeat) As Bool ean
' * *
o PURPCSE: TO DETERMNE |IF A VTAB HAS A JON (RELATE) OR NOT AND *
v |F SO UPDATE THE SELECTED FEATURES REFLECTING THE JO N *
TE— *
' * dVEN aVTab = nane of VTab to be processed *
b updSel Feat = flag denoting whether or not the selected *
tox features associated with the join should *
b be updated (redrawn/resel ected) *
o true = redraw, false = do not redraw *
TR— *
tox RETURN: avlsJoined = flag denoting whether the input object *
' has a join or not *
b true = has join, false = not joined *
TR— *
' * Dim aVTab As String, updSel Feat As Bool ean *
' * Dim avlsJoined As Bool ean *
TR— *
Public Function avlsLinked(aVTab) As Bool ean
TR— *
' * PURPCSE: TO DETERM NE |IF A VTAB HAS LINKS (RELATES) OR NOT *
' * *
" * G VEN aVTab = nane of VTab to be processed *
TR— *
tox RETURN: avlsLinked = flag denoting whether the input object *
tox has 1inks or not *
o true = has links, false = not I|inked *
' * *
' * DimaVTab As String *
' * Dim avlsLinked As Bool ean *
TR— *
Public Function avlsSDE(nane) As Bool ean
' * *
' * PURPCSE: DETERM NE |F A LAYER IS AN SDE GECDATABASE *
TR— *
' * G VEN name = name of input object to be checked *
TR— *
tox RETURN: avl sSDE = flag denoting whether the input object is *
b an SDE geodat abase or not *
tox true = is, false = not *
TR— *
' * Dimname As Variant *
' * Dim avlsSDE As Bool ean *
TR— *
Public Function avlsVisible(nane) As Bool ean
T *
' * PURPCSE: DETERM NE | F AN OBJECT IS VISIBLE OR NOT *
' * *
' * G VEN name = nane of input object for which its *
b visibility status is to be checked *
TR— *
b RETURN: avlsVisible = visible state of the input object *
o true = visible, false = not visible *
TR— *
' * Dimname As Variant *
' * DimavlsVisible As Bool ean *
TR— *
Public Function avlsWthin(aShapel As |Geonetry,
aShape2 As | Geonetry,

aDi st) As Bool ean
TR— *
' * PURPCSE: TO DETERMNE IF A SHAPE IS WTH N A DI STANCE OF *
v ANOTHER SHAPE *
TR— *
" * G VEN aShapel = geonetry object to be checked *

D-46 Avenue Wraps

o aShape2 = source geonetry object aShapel is to be *
v conpar ed agai nst *
b aDi st = distance val ue *
' * *
o RETURN: avlsWthin = flag denoting if aShapel is within a user *
b speci fied distance of aShape2 *
o true = it is, false = it is not *
' * *
' * Dim aShapel As |Geonetry, aShape2 As | Geonetry *
" * Dim abDist As Double *
' * DimavlsWthin As Bool ean *
TE— *
Public Function avJoin(aVTabl, aFieldl, aVTab2, aField2) As Integer

T *
o PURPOSE: TO JON aVTab2 to aVTabl USING USER SPECI FlI ED FI ELD *
b NAMES *
TE— *
b G VEN: aVTabl = nane of VTab which aVTab2 is to be joined to *
tox aFieldl = field in aVTabl join is based upon *
tox aVTab2 = name of VTab to be joined to aVTabl *
tox aField2 = field in aVTab2 join is based upon *
TR— *
' * RETURN: avJoin = error flag *
o 0 no error *
tox 1 error detected *
b 2 : aVTabl does not exi st *
b 3 aVTab2 does not exi st *
TR— *
' * DimaVTabl As String, aFieldl As String *
' * DimaVTab2 As String, aField2 As String *
' * DimavJoin As Integer *
' * *
Public Sub avLegendGet Synbol s(thel egend As |FeatureRenderer, synblList)
TR— *
' * PURPGCSE: GET A LIST OF SYMBOLS APPEARING |IN A LEGEND *
TR— *
' * G VEN theLegend = legend to be processed *
TR— *
' * RETURN: synbLi st = list of synmbols used in the |egend *
TR— *
' * Dim theLegend As | FeatureRenderer *
' * Dim synbList As New Coll ection *
' * *
Public Sub avLegendSet Synbol s(thel egend As |FeatureRenderer, synblList)

' * *
o PURPCOSE: TO SET THE SYMBOLS USED IN THE CLASSI FI CATI ONS WHI CH *
tox APPEAR | N A LEGEND *
TR— *
' * G VEN theLegend = legend to be processed *
o synmbList = list of synmbols that are to be assigned *
b to the classifications in a |egend *
TR— *
' * RETURN: not hi ng *
TR— *
' * Dim theLegend As | FeatureRenderer *
' * Dim synbList As New Coll ection *
TR— *
Public Sub avLineFil eCl ose(aFile)

T~ *
' * PURPCSE: CLOSE A FILE CONNECTI ON *
' * *
' * G VEN aFile = textstream object to be processed *
TR— *
' * RETURN: not hi ng *
' * *
"' * DimaFile *
TR— *

Appendix D Listing of Avenue Wraps™ D-47

Public Function avlLineFil eMake(aFil eNane, aFilePerm
*

0 *
' PURPOSE: OPEN A FILE CONNECTI ON FOR READI NG AND/ OR WRI TI NG *
0 *
' G VEN: aFi | eName = the name of the file to be processed *
' aFi | ePerm = the type of file connection desired *
' READ : open file for reading *
' WRITE : open file for witing *
' APPEND : open file for appending *
' *
' RETURN avLi neFi |l eMake = textstream object that can be used *
' for reading and/or witing operations *
0 *
' NOTE: If an error is detected in opening the file no error *
' message is generated, however, avlLineFileMake will be *
' set to NOTHING so that the calling routine will need *
' to perform the appropriate error checking *
0 *
' Dim aFileName As String, aFilePerm As String *
' Di m avLi neFi | eMake *
0 *
Public Function avLink(aVTabl, aFieldl, aVTab2, aField2) As Integer

' *
' PURPOSE: TO LINK (RELATE) aVTab2 to aVTabl USING USER SPECIFIED *
' FI ELD NAMES *
0 *
' G VEN: aVTabl = nane of VTab which aVTab2 is to be linked to *
' aFieldl = field in aVTabl link is based upon *
' aVTab2 = name of VTab to be linked to aVTabl *
' aField2 = field in aVTab2 link is based upon *
' *
' RETURN: avLink = error flag *
' 0 no error *
' 1 error detected *
' 2 : aVTabl does not exi st *
' 3 aVTab2 does not exi st *
0 *
' Dim aVTabl As String, aFieldl As String *
' Dim aVTab2 As String, aField2 As String *
' Di m avLi nk As |nteger *
' *

Pu

ic Sub avListFiles(aDIR, filType, fillList)

PURPGCSE: GET A LIST OF FILES IN A DI RECTORY

G VEN: aDir = the directory to be scanned
fil Type = the type of files to be searched for
vbNor nmal 0 Specifies files with no

attributes

vbReadOnl y 1 Specifies read-only files in
addition to files with no
attributes

vbHi dden 2 Specifies hidden files in
addition to files with no
attributes

VbSyst em 4 Specifies systemfiles in
addition to files with no
attributes

vbVol unme 8 Specifies volune l|abel; if
any other attribute is given
vbVol ume is ignored

vbDirectory 16 Specifies directories or
folders in addition to files
with no attributes

RETURN: filList = list of files that were found as specified
by the fil Type argunent

G VI I B T R R T R I I S e L S I A A T T I I R A Gl © R I N R S A T T T R Y

$ ok ok R Rk 3k b b R % % 3k Sk Sk 3k 3k Ok F ¥k F F F

NOTE: The fil Type argument can be specified either as the

D-48 Avenue Wraps

' nuneric value, shown above, or as the VB keyword that *
' is shown *
0 *
' DimabDir As String *
' Dim fil Type As Integer *
' Dim filList As New Collection *
0 *
Public Sub avMveTo(aDoc As |Unknown, aleft, aTop)

0 *
' PURPOSE: TO REPOSI TION A W NDOW OBJECT *
' *
' G VEN: aDoc = the wi ndow obj ect *
' alLeft = distance from the left side of the screen *
' aTop = distance from the top of the screen *
0 *
' RETURN: not hi ng *
' *
' Di m aDoc As | Unknown *
' Dim aLeft, aTop As Long *
0 *

Pu

ic Sub avMsgBox(aMessage, Optional aButtons, Optional Heading)

PURPGCSE: DI SPLAY A MESSAGE BOX SIMLAR TO THE MESSAGE BOX THAT
I'S DI SPLAYED BY THE VB MsSGBOX FUNCTION BUT IN A
PCSI TI ON CONTROLLED BY GLOBAL VARI ABLES RATHER THAN I N
THE CENTER OF THE APPLI CATI ON W NDOW

G VEN: aMessage = the nessage to be displayed

aButtons = Optional, nuneric expression that is the
sum of val ues specifying the nunber and
type of buttons to display, the icon style
to use, the identity of the default button,
and the nodality of the message box. If
omtted, the default value for buttons is 0O

Heading = Optional, string expression displayed in
the title bar of the dialog box. If omtted
the application name is used

RETURN: not hi ng

% R ok ok % ok ok k% Ok ok 3k ¥ ok o ¥ oy KT K Ok ok X X F x % * * ok FT F ok F ¥ F * %

*

I O . N I

Dim aMessage As Variant, aButtons As Variant, Heading As Variant

*

Public Sub avMsgBoxChoice(aList, aMsg, Heading, ians)
*

0 *
b PURPOSE: DI SPLAY A CHO CE MESSAGE BOX WHICH CONTAINS A LIST OF *
v STRI NG | TEMS *
TR— *
' * G VEN alLi st = the list of items to be displayed *
b aMsg = the nessage to be displayed *
b Headi ng = nessage box caption *
' * *
' * RETURN: i ans = the item selected by the user, if the user *
tox Cancels the command: ians will be equal to *
v NULL *
TR— *
' Dim aList As New Collection, aMsg As Variant, Heading As Variant *
' * Dimians As Variant *
TR— *
Public Sub avMsgBoxChoi ce2(aList, aMsg, Heading, itenList)

TE— *
' * PURPCSE: DI SPLAY A LIST OF STRINGS WTHIN A MESSAGE BOX *
TR— *
' * G VEN alLi st = the list of strings to be displayed *
b aMsg = the message to be displayed *
b Heading = nessage box caption *
TR— *
b RETURN: itenmList = the list of itens selected by the user, *
' will be an enpty list if the user cancels *
' * *

the operation

Appendix D Listing of Avenue Wraps™ D-49

:

This subroutine is the same as avMsgBoxChoice with the
exception that once the user mmkes a selection the
message box is terminated. In addition, the OK and
Cancel buttons are not displayed on the nessage box

Dim aList As New Collection, aMsg As Variant, Heading As Variant
DimitenList As New Collection

ok 4 % ok % ok oy *
L I N I

Public Function avMsgBoxF(aMessage, _
Optional aButtons, Optional Heading) As Integer

PURPGCSE: DI SPLAY A MESSAGE BOX SIMLAR TO THE MESSAGE BOX THAT
I'S DI SPLAYED BY THE VB MsSGBOX FUNCTION BUT IN A
PCSI TI ON CONTROLLED BY GLOBAL VARI ABLES RATHER THAN I N
THE CENTER OF THE APPLI CATI ON W NDOW

G VEN: aMessage = the message to be displayed
aButtons = Optional, nuneric expression that is the
sum of val ues specifying the number and
type of buttons to display, the icon style
to use, the identity of the default button
and the nodality of the nessage box. If
omtted, the default value used is O
Avail abl e button val ues:
0 : (vbOKOnly) XK
1 : (vbOKCancel) OK and Cancel
3 : (vbYesNoCancel) Yes, No, and Cancel
4 : (vbYesNo) Yes and No
Avail abl e icon val ues:
32 : (vbQuestion) Warning Query
48 : (vbExcl amation) Warning Message
64 : (vblnformation) Infornation Message
Avail abl e default button val ues:
0 : (vbDefaultButtonl) Button 1 default
256 : (vbDefaultButton2) Button 2 default
Headi ng = Optional, string expression displayed in
the title bar of the dialog box. If not
specified the application nane is used

indicates which button the user clicked
1: K (vbCOK)

2 : Cancel (vbCancel)

3 : Abort (vbAbort)

4 : Retry (vbRetry)
5 -
6
7

:
2

avMsgBoxF =

: lgnore (vbl gnor e)
Yes (vbYes)
No (vbNo)

® ok ok Rk ok ok ok ok 4 ko ok % ok ok K ok F % Ok k% ok ok X 3k * ok ok ¥ o ok K * % * yx *

*

Dim aMessage As Variant, aButtons As Variant, Heading As Variant

I T L T R

: Di m avMsgBoxF As | nteger
'PuE)I ic Sub avMsgBoxlnfo(aMessage, heading) .
: : PURPGCSE: DI SPLAY AN | NFORMATI ON MESSAGE BOX :
' * GdVEN aMessage = the nessage to be displayed *
: : Headi ng = nessage box caption :
: : RETURN: not hi ng :
: : Di m aMessage As Variant, Heading As Variant :
'PuEI ic Sub avMsgBoxl nput(aMsg, heading, aDefault, ians))
: : PURPGCSE: DI SPLAY A SINGLE LINE | NPUT MESSAGE BOX :
: : G VEN: aMsg = the message to be displayed :

Headi ng message box caption

D-50 Avenue Wraps

' aDefault = the default button val ue *
' *
' RETURN: i ans = the response from the user, if the user *
' Cancel s the command: ians will be equal to *
' NULL *
0 *
' Dim aMsg As Variant, Heading As Variant, aDefault As Variant *
' Dimians As Variant *
0 *
Public Sub avMsgBoxLi st (aList, aMsg, Heading, ians)

0 *
' PURPCSE: DI SPLAY A LIST OF STRINGS WTHIN A MESSAGE BOX *
0 *
' G VEN: alLi st = the list of strings to be displayed *
' aMsg = the nessage to be displayed *
' Headi ng = nessage box caption *
0 *
' RETURN: i ans = the button that was selected, ians wll be *
' equal to vbOK or vbCancel *
0 *
' Dim aList As New Collection, aMsg As Variant, Heading As Variant *
' Dimians As I|nteger *
0 *

Pu

ic Sub avMsgBoxMultilnput(aMsg, heading, |abels, defaults, aList)

PURPGCSE: DI SPLAY A MULTI - I NPUT LINE MESSAGE BOX

G VEN: aMsg = the message to be displayed
Heading = nessage box caption
| abel s = list of labels for each of the itens that
are pronpted for
defaults = list of default values for each of the
itenms that are pronpted for
RETURN: alLi st = list of responses for each of the itens
that were displayed, if the user Cancels
the command: aList will be an enmpty Iist,
that is, aList.Count will equal O
NOTE: There is no limt to the nunber of itens that can be

pronmpted for, the difficulty however will be that the

dial og box may exceed the visible area of the screen.

Recommend using avMsgBoxMiultilnput2 when nore than 12
to 15 items are to be displayed.

Dim aMsg As Variant, Heading As Variant
Dim | abels As New Collection, defaults As New Coll ection
Dim aList As New Col |l ection

L I

that is, aList.Count will equal O

Dim aMsg As Variant, Heading As Variant
Dim | abels As New Collection, defaults As New Coll ection
Dim aList As New Col |l ection

ko ok Ok ok ko % ok ok ok F ok K ok Ok ok ox FTT Kk K x ok K ok % ok % % K K ok ok % F ok o F % ok ok F % FTT F Kk 4 ok k % F ok F % F % FT F * oy F * k% Ok ok

Public Sub avMsgBoxMiltilnput2(aMsg, heading, |abels, defaults, aList)

' *
' PURPCSE: DI SPLAY A MULTI -1 NPUT LINE MESSAGE BOX WTH A BACK *
' BUTTON WHEN MORE THAN 10 | TEMS ARE TO BE DI SPLAYED *
' *
' G VEN: aMsg = the message to be displayed *
' Headi ng = nessage box caption *
' | abel s = list of labels for each of the itens that *
' are pronpted for *
' defaults = list of default values for each of the *
' itenms that are pronpted for *
' *
' RETURN: alLi st = list of responses for each of the itens *
' that were displayed, if the user Cancels *
' the command: aList will be an empty Iist, *
' *
0 *
0 *
0 *
0 *

Appendix D Listing of Avenue Wraps™ D-51

' * *
Public Sub avMsgBoxMulti List(aList, aMsg, Heading, itenList)

TR— *
o PURPCSE: DI SPLAY A LIST OF STRINGS WTHIN A MESSAGE BOX WTH *
b THE ABILITY TO SELECT MULTI PLE | TEMS *
' * *
' * G VEN alLi st = the list of strings to be displayed *
b aMsg = the message to be displayed *
b Headi ng = nessage box caption *
TE— *
b RETURN: itenmList = the list of itens selected by the user, *
b will be an enpty list if the user cancels *
' the operation *
TE— *
v Dim aList As New Collection, aMsg As Variant, Heading As Variant *
" * Dimitenlist As New Collection *
TE— *
Public Sub avMsgBoxWarni ng(aMessage, Headi ng)

T~ *
' * PURPCSE: DI SPLAY A WARNI NG MESSAGE BOX *
TR— *
" * dVEN aMessage = the nessage to be displayed *
b Headi ng = nessage box caption *
' * *
' * RETURN: not hi ng *
TR— *
' * Dim aMessage As Variant, Heading As Variant *
' * *
Public Sub avMsgBoxYesNo(aMessage, Heading, aDefault, ians)

T *
' * PURPCSE: DI SPLAY A YES, NO MESSAGE BOX *
TR— *
" * dVEN aMessage = the nessage to be displayed *
b Heading = nessage box caption *
' aDefault = the default button setting *
v true = yes, false = no *
TR— *
o RETURN: i ans = the button that was selected, ians will be *
v equal to vbYes or vbNo *
' * *
o Dim aMessage As Variant, Heading As Variant, aDefault As Boolean *
" * Dimians As I|nteger *
TR— *
Public Sub avMsgBoxYesNoCancel (aMessage, heading, aDefault, ians)

' * *
' * PURPCSE: DI SPLAY A YES, NO, CANCEL MESSAGE BOX *
TR— *
' * G VEN aMessage = the nessage to be displayed *
b Headi ng = nessage box caption *
' aDefault = the default button setting *
v true = yes, false = no *
TR— *
o RETURN: i ans = the button that was selected, ians will be *
b equal to vbYes, vbNo or vbCancel *
TR— *
tox Dim aMessage As Variant, Heading As Variant, aDefault As Boolean *
" * Dimians As I|nteger *
TR— *
Public Function avMiltipointMake(aPntList) As |Miltipoint

TE— *
o PURPCSE: TO CREATE A MULTIPO NT OBJECT FROM A LIST OF PO NTS *
TR— *
' * G VEN aPnt Li st = list of point objects *
TR— *
' * RETURN: avMul ti poi nt Make = the nultipoint feature *
TR— *
' * DimaPntList As New Collection *
" * DimavMiltipoint Make As | Milti point *
TR— *

D-52 Avenue Wraps

Public Sub avNatural (pnxDoc As | MDocunment, theThene, aField, nunC ass)
' * *
' * PURPCSE: TO SET THE LEGEND THAT |S ASSCCI ATED WTH A THEME *
o TO BE OF QUANTILE TYPE WTH THE CLASSES DETERM NED BY *
' USI NG THE NATURAL BREAK METHOD *
TE— *
' * G VEN pmxDoc = the active view *
b theTheme = theme to be processed *
tox aField = field nane that theme is to be classified *
o* upon *
tox nunCl ass = nunber of classes to be generated *
L *
' * RETURN: not hi ng *
TE— *
' * NOTE: Divides the features in the theme into nunC ass *
o classifications of equal size using the values in *
o aField. This is only supported for nuneric fields *
' * *
' * Dim pnxDoc As | MkDocunent *
' * DimtheThene As Variant, aField As String *
" * DimnunC ass As Long *
TR— *
Public Sub avnj Get Name(theCbject As |Unknown, aName)

' * *
' * PURPOSE: TO GET THE NAME OF AN OBJECT *
TR— *
" * G VEN theObject = object to be processed *
' * *
' * RETURN: aNare = nane assigned to the object *
TR— *
o NOTE: This subroutine checks if the object matches a known *
o type, if so, the appropriate interface is selected *
b and the given nanme assigned to the object is extracted *
b If a match is not nade, the nane will be NULL *
TR— *
" * DimtheObject As |Unknown *
' * DimaName As Variant *
' * *
Public Sub avnj Set Name(theObject As |Unknown, aName)

T *
' * PURPOCSE: TO SET THE NAME FOR AN OBJECT *
TR— *
' * G VEN theObj ect = object which is to be naned *
' aNane = nane to be assigned to the object *
TR— *
' * RETURN: not hi ng *
TR— *
tox NOTE: This subroutine checks if the object matches a known *
o type, if so, the appropriate interface is selected *
o and the given nane assigned to the object. If a nmatch *
tox is not made, the object is left unaltered *
TR— *
" * DimtheObject As |Unknown *
" * DimaName As String *
' * *
Public Function avOpenFeatC ass(opnode, sDir, _

sNane, aFCtype) As | Unknown

TR— *
' * PURPCSE: OPEN A DATASET OR A FEATURECLASS IN A DATASET FOR *
b PROCESSI NG *
TR— *
" * G VEN opnode = type of dataset to be opened *
v 1 shapefile *
o 2 : raster *
tox 3 tin *
tox 4 cover age *
o 5 : access database feature class *
o 6 : access database feature dataset *
' 9 : cad draw ng *

Appendix D Listing of Avenue Wraps™ D-53

' sDir = directory location of database *
' sName = nane of database *
tox aFCt ype = feature class type (only used for *
b coverages, access databases and CAD) *
b if not to be used specify as NULL, *
b for opmbde = 5 this is the name of *
b the feature class to be opened *
b for opmbde = 6 this is the name of *
' a dataset to be opened and sNane is *
o the name of the access database *
b for opmbde = 9 this is the name of *
' the feature class to be opened, valid*
o values for this node include PO NT, *
o POLYLI NE, POLYGON and ANNOTATI ON *
' * *
o RETURN: avOpenFeat Cl ass = dataset that is opened, if none, the *
o value will be set to NOTH NG *
' * *
" * Dim opnode As |nteger *
' * DimsDr As String, sName As String, aFCtype As String *
' * Dim avQpenFeat C ass As | Unknown *
' * *
Public Function avOpenWrkspace(opnode, sDir, sName) As |Wrkspace

' * *
' * PURPCSE: OPEN A WORKSPACE FOR PROCESSI NG *
' * *
" * dVEN opnode = type of workspace to be opened *
v 1 shapefile *
o 2 raster *
tox 3 : tin *
tox 4 cover age *
tox 5 access dat abase *
' sDir = directory location of workspace *
b sNane = nane of workspace *
' * *
o RETURN: avOpenWir kspace = workspace that is opened, if none, *
b the value will be set to NOTHI NG *
' * *
' * Dimopnode As Integer *
' * DimsDr As String, sName As String *
' * Dim avOpenWr kspace As | Wrkspace *
' * *
Public Sub avPal etteGetlList(aGalleryType,

thePalette As |StyleGallery, aGallerylList)

PURPGCSE: GET A LIST OF THE ITEMS WTH N A SPECI FI C GALLERY

G VEN: aGalleryType = type of gallery to be processed
keywor d name of gallery
PEN : Line Synbols
MARKER : Marker Synbols
FI LL : Fill Synbols
TEXT : Text Synbols
COLOR : Colors
REFERENCE . Reference Systens
SHADOWS : Shadows

AREAPATCHES : Area Patches
LI NEPATCHES : Line Patches

LABELS . Labels
NORTHARROAS : North Arrows
SCALEBARS : Scale Bars
LEGENDI TEMS : Legend |tens
SCALETEXT . Scale Texts
COLORRAMPS : Col or Ranps
BORDERS . Borders
BACKGROUNDS : Backgrounds
thePal ette = style gallery, contains all galleries

s % s ok Rk R ok F ok k% ok Sk ok 3k %k F ¥ x * oy *
$ ok ok R R kR ok ok k% % 3k Sk ok 3k %k ¥ ¥ ¥

RETURN: aGlleryList = list of items in the desired gallery

D-54

Avenue Wraps

TE— *
tox Dim aGalleryType As String, thePalette As |StyleGallery *
" * DimaGalleryList As New Collection *
TE— *
Public Sub avPal etteGet Nanes(aGall eryType,

thePalette As IStyleGallery, aNameList)

' *
' PURPOSE: GET A LIST OF THE NAMES OF THE ITEMS WTH N A SPECIFIC *
' GALLERY *
' *
' G VEN: aGalleryType = type of gallery to be processed *
' keywor d name of gallery *
' PEN : Line Synbols *
' MARKER Mar ker Synbol s *
' FI LL Fill Symbols *
' TEXT : Text Synbols *
' COLOR Col ors *
' REFERENCE Ref erence Systens *
' SHADOWS : Shadows *
' AREAPATCHES : Area Patches *
' LI NEPATCHES : Line Patches *
' LABELS . Labels *
' NORTHARROAS : North Arrows *
' SCALEBARS : Scale Bars *
' LEGENDI TEMS : Legend |tens *
' SCALETEXT Scal e Texts *
' COLORRAMPS Col or Ranps *
' BORDERS . Borders *
' BACKGROUNDS : Backgrounds *
' thePal ette = style gallery, contains all galleries *
' *
' RETURN: aNanelLi st = list of names corresponding to the *
' items in the desired gallery *
' *
' NOTE: There is a one to one correspondance between the nanmes *
' in aNanmeList and the synbols in aGallerylList passed *
' by avPal etteGetList. Use this subroutine when it is *
' desired to know the name of a synbol in a gallery *
' *
' Dim aGalleryType As String, thePalette As |StyleGallery *
' Di m aNanmeLi st As New Col | ection *
' *

* FTT F ok F F 4 ok Kk K ok R TT F ok Kk ¥ ok Ok X % ok F x FTT K ok x ¥ % ok % x F ok x K ok F Ok ok ok Kk ok ok ¥ % ok 3k Kk F F ¥ Ok F F x F F 5 *

Public Sub avPanTo(pnxDoc As | MDocunent, thePoint As |Point)

0 *
' PURPOSE: SCRI PT TO CENTER THE DI SPLAY ABOUT A PO NT *
' *
' G VEN: pmxDoc = the active view *
' thePoint = point that the display is to be centered *
' about *
' *
' RETURN: not hi ng *
0 *
' Di m pmxDoc As | MkDocunent *
' Di m t hePoi nt As | Poi nt *
0 *
Public Function avPix2Map(pixelUnits As Double) As Double

0 *
' PURPOSE: TO CONVERT Pl XELS | NTO MAP UNI TS *
' *
' G VEN: pi xel Units = nunber of pixels *
0 *
' RETURN: avPi x2Map = nmap units value representing the nunber *
' of pixels *
' *
' Di m pixel Units As Doubl e, avPix2Map As Double *
0 *
Public Sub avPl AsLi st (pFeatureGeom As |Geonetry, shapelist)

0 *
' *

PURPGCSE: TO CREATE A PO NT LIST FROM A GEOVETRY OBJECT

Appendix D Listing of Avenue Wraps™ D-55

G VEN: pFeat ureGeom = geonetry object to be processed

RETURN: shapelLi st = list of points conprising the object
structure of shapelist is:
Item 1: collection of points in part 1
Repeat Item 1 for each part
So that, shapeList is a list of
collections with each collection
containing points

NOTE: (a) This routine can be used for Point, Polyline,
Pol ygon and Miulti-point features
(b) Use subroutine avAsList when an |Feature object is
known and not an |Geonetry object

Di m pFeat ureGeom As | Geonetry
Di m shapeLi st As New Col |l ection

I T T R N

Pu

ic Sub avPl AsList2(pFeatureGeom As |Geonetry, shapelist)
PURPGCSE: TO CREATE A PO NT LIST FROM A GEOVETRY OBJECT
G VEN: pFeat ureGeom = geonetry object to be processed
RETURN: shapeli st = list of points conprising the object
structure of shapelist is:

Item 1: nunmber of parts
Item 2: nunber of points in part 1

Item 3: x value of point 1 in part 1
Item 4: y value of point 1 in part 1
Item 5: z value of point 1 in part 1
Item 6: m value of point 1 in part 1

Item 7: id value of point 1 in part 1

Item 8: Repeat Itens 3 - 7 for each
poi nt

Repeat Itens 2 - 8 for each part

NOTE: This routine can be used for Point, Polyline, Polygon
and Multi-point features

Di m pFeat ureGeom As | Geonetry
Di m shapeLi st As New Coll ection

$ Ok ok R % 3k ok ok R % %k Sk % 3k %k ¥ ¥ ¥ F

Public Sub avPlFindM nSeg(el mtList, thePart, mnDis)
PURPCSE: TO FIND THE SMALLEST SEGMENT LENGTH IN A POLYLINE OR
POLYGON SHAPE

G VEN: elmtList = list of points conprising the feature
structure of elmtlList is:
Item 1: nunber of parts
Item 2: nunber of points in part 1
Item 3: x value of point 1 in part
Item 4: y value of point 1 in part
Item 5: z value of point 1 in part
Item 6: m value of point 1 in part
Item 7: id value of point 1 in part 1
Item 8: Repeat Itens 3 - 7 for each

poi nt

Repeat Itens 2 - 8 for each part

PrRRPP

RETURN: t hePar t = the part of the polyline (0 - i)
part nunbers begin at zero, not one
m nDi s = the smallest segnent length in the shape

Dim el mtList As New Collection
Dim thePart As Long, minDis As Double

¥ ok ok Ok sk ok ok ¥ ok F ok ok ok k ok ok k¥ ok x ¥ Ok u T Ok k k Ok ok x4 F ok F ok ok F K ok F ¥ ok x F % Ok x T Ok k ok Ok F x ok % F Ok ok * F ok * x * % *

$ ok ok R R % % ok ok ok 3k 3k 3k Ok ¥ % % ok Ok Ok ¥ F

D-56 Avenue Wraps

Public Sub avPl FindVertex(ipnmode, elmtList, X, Y, thePart, thePt)
*
PURPCSE: TO FIND THE VERTEX MATCHING OR CLOSEST TO A LOCATI ON

G VEN: i prode = the nmpde of operation
0 : find first vertex matching a |location
1 : find the vertex closest to a location

elmtlList = list of points conprising the feature

structure of elmtlList is:
Item 1: nunber of parts
Item 2: nunber of points in part 1
Item 3: x value of point 1 in part
Iltem 4: y value of point 1 in part
Item 5: z value of point 1 in part
Item 6: m value of point 1 in part
Item 7: id value of point 1 in part 1
Item 8: Repeat Itens 3 - 7 for each

R RRPR

poi nt
Repeat Itens 2 - 8 for each part
XY = coordi nates of new point
RETURN: t hePar t = the part of the polyline (0 - i)
part nunbers begin at zero, not one
t hePt = point nunber in part closest to location

poi nt nunbers begin at one, not zero

Di m i pnrode As |nteger
Dim elmtList As New Collection, X As Double, Y As Double
Dim thePart, thePt As Long

$ ok R Rk 3k ok ok 3k 3k 3k Ok 3k 3k 3k Ok Ok % % ok ok %k ¥ ¥ *

Pu

ic Sub avPl Get 3Pt (shapeList, thePart, X1, Y1, Xm Ym X2, Y2)

PURPGCSE: TO CGET 3 PO NTS FROM A FEATURE PO NT LIST FOR A
SPECI FI C PART I N THE FEATURE

G VEN: shapelList = list of points conprising the feature
structure of shapeList is:
Item 1: nunber of parts
Item 2: nunber of points in part 1
Iltem 3: x value of point 1 in part 1
Iltem 4: y value of point 1 in part 1
Item 5: z value of point 1 in part 1
Item 6: mvalue of point 1 in part 1
Item 7: id value of point 1 in part 1
Item 8: Repeat Itens 3 - 7 for each

poi nt
Repeat Itens 2 - 8 for each part
t hePar t = the part of the polyline (0 - i)
part nunbers begin at zero, not one
RETURN: X1, Y1 = start point coordinates of part
XM YM m d point coordinates of part

X2, Y2 end point coordinates of part

Di m shapelLi st As New Collection, thePart As Long
Dm X1, Y1, XM YM X2, Y2 As Double

Pu

ic Sub avPl Mdify(ipmde, elmtList, thePart, iPt, X, vy, Z, new.ist)

PURPGCSE: TO MODIFY A SPECIFIC PART IN A FEATURE PO NT LIST

G VEN: i prode = the nmpde of operation
0 = change coordinates of a point
1 insert new point
2 del et e point
elmtList = list of points conprising the feature
structure of elmtlList is:
Item 1: nunber of parts
Item 2: nunber of points in part 1

* ok % x ok ok ok ok Ok ox KT R ok ok F Kk K ok F K ok ok F Kk ok k k k ok F ¥ ok x ¥ ok % F T F % x ok F k ok ok % F ok ok F ok ok F F ok F F Ok ok ¥ * ok K F y

F %k ok ok ok % % ok ok ok X e+ ok ok ok K K F F ok ok ok ¥ ¥ ok ok ok ¥ ¥ ok ok * ¥ * * * * *

Appendix D Listing of Avenue Wraps™ D-57

b Iltem 3: x value of point 1 in part 1 *
b Iltem 4: y value of point 1 in part 1 *
b Item 5: z value of point 1 in part 1 *
b Item 6: mvalue of point 1 in part 1 *
b Item 7: id value of point 1 in part 1 *
b Item 8: Repeat Itens 3 - 7 for each *
' poi nt *
b Repeat Itens 2 - 8 for each part *
' t hePar t = the part of the polyline (0 - i) *
b part nunbers begin at zero, not one *
' i Pt = index in part to be processed *
b i ndex nunbers begin at one, not zero *
tox if zero is specified the last point in the *
v part will be processed *
v XY,z = coordi nates of new point *
' * *
tox RETURN: newlLi st = new list of points conprising the feature *
TR— *
" * Dimipnrode As |nteger *
tox Dim el mtList As New Collection, thePart As Long, iPt As Long *
" * Dim X As Double, Y As Double, Z As Doubl e *
" * Dimnew.ist As New Col |l ection *
TR— *
Public Function avPointlDwvake(xPt, yPt, |1DPt) As |Point

T *
' * PURPCSE: TO CREATE A PONT WTH |ID OBJECT FROM COORDI NATES *
TR— *
" * GdVEN xPt = x coordinate of point *
b yPt = y coordinate of point *
v | DPt = | D val ue of point *
TR— *
' * RETURN: avPoi nt | DMake = the point feature *
' * *
' * Dim xPt As Double, yPt As Double, IDPt As Long *
' * Dim avPoi nt| DMake As | Point *
' * *
Public Function avPointMake(xPt, yPt) As |Point

T *
' * PURPCSE: TO CREATE A PO NT OBJECT FROM COORDI NATES *
' * *
" * GdVEN xPt = x coordinate of point *
b yPt = y coordinate of point *
TR— *
' * RETURN: avPoi nt Make = the point feature *
TR— *
" * DimxPt, yPt As Double *
' * Dim avPoi nt Make As | Poi nt *
' * *
Public Function avPoint Make(xPt, yPt, nPt) As |[Point

T *
' * PURPCSE: TO CREATE A PONT WTH M OBJECT FROM COORDI NATES *
' * *
" * GdVEN xPt = x coordinate of point *
b yPt = y coordinate of point *
v nPt = m val ue of point *
TR— *
' * RETURN: avPoi nt MVake = the point feature *
TR— *
' * Dim xPt As Double, yPt As Double, nPt As Double *
' * Dim avPoi nt Mvake As | Poi nt *
TR— *
Public Sub avPointSetlD(aPt As |Point, |[|DPt)

TE— *
' * PURPOSE: TO SET THE ID ATTRIBUTE FOR A PO NT *
TR— *
' * G VEN aPt = point object to be nodified *
v | DPt = | D val ue of point *
TR— *
' * RETURN: not hi ng *

D-58 Avenue Wraps

TE— *
' * NOTE This subroutine nodifies the aPt point object *
' * *
"' * DimaPt As |Point *
"' * DimIDPt As Long *
TE— *
Public Sub avPointSetMaPt As [|Point, nPt)

' * *
' * PURPOSE: TO SET THE M ATTRIBUTE FOR A PO NT *
TE— *
' * G VEN aPt = point object to be nodified *
b Pt = mval ue of point *
' * *
' * RETURN: not hi ng *
TR— *
' * NOTE This subroutine nodifies the aPt point object *
TE— *
"' * DimaPt As |Point *
" * DimnPt As Double *
TR— *
Public Sub avPointSetz(aPt As |Point, zPt)

TE— *
' * PURPOSE: TO SET THE Z ATTRIBUTE FOR A PO NT *
TR— *
' * G VEN aPt = point object to be nodified *
b zPt = z coordinate of point *
L *
' * RETURN: not hi ng *
TR— *
' * NOTE This subroutine nodifies the aPt point object *
TR— *
"' * DimaPt As |Point *
" * DimzPt As Double *
TR— *
Public Function avPointZMake(xPt, yPt, zPt) As |Point

' * *
' * PURPCSE: TO CREATE A 3D PO NT OBJECT FROM COORDI NATES *
TR— *
" * GdVEN xPt = x coordinate of point *
b yPt = y coordinate of point *
b zPt = z coordinate of point *
TR— *
' * RETURN: avPoi nt MakeZ = the point feature *
TR— *
" * DimxPt, yPt, zPt As Double *
' * Dim avPoi nt Make As | Poi nt *
TR— *
Public Function avPol ygonMake(shapeList) As | Polygon

T~ *
" * PURPCSE: TO CREATE A POLYGON OBJECT FROM A PO NT LI ST *
TR— *
' * dVEN shapeli st = the list of points conprising the *
' pol ygon *
b structure of shapelist is: *
b Item 1: collection of points in part 1 *
b Repeat Item 1 for each part *
b So that, shapeList is a list of *
o collections with each collection *
v containing points *
TR— *
' * RETURN: avPol ygonMake = the pol ygon feature *
' * *
' * NOTE: If the last point in a part is not the same as the *
o first point in the part, a point will be added to nake *
tox sure that the part fornms a closed pol ygon *
TR— *
" * Dim shapeList As New Col |l ection *
' * Dim avPol ygonvake As | Pol ygon *
TR— *

Appendix D Listing of Avenue Wraps™ D-59

Public Function avPol ygonMake2(shapeList) As |Polygon
*
PURPCSE: TO CREATE A POLYGON OBJECT FROM A PO NT LI ST

G VEN: shapeli st = the list of points conprising the

pol ygon

structure of shapelist is:

Item 1: nunber of parts

Item 2: nunber of points in part 1
Item 3: x value of point 1 in part
Item 4: y value of point 1 in part
Item 5: z value of point 1 in part
Item 6: m value of point 1 in part
Item 7: id value of point 1 in part 1
Item 8: Repeat Itenms 3 - 7 for each

poi nt
Repeat Itens 2 - 8 for each part

A

RETURN: avPol ygonMake2 = the pol ygon feature
NOTE: If the last point in a part is not the same as the
first point in the part, a point will be added to nake

sure that the part forns a closed pol ygon

Di m shapeLi st As New Col |l ection
Di m avPol ygonMake2 As | Pol ygon

I T O E T N R

Public Function avPolyline2Pt(X1, Y1, X2, Y2) As |IPolyline
0 *
' PURPCSE: TO CREATE A TWO PO NT POLYLI NE FROM COORDI NATES *
' *
' G VEN: X1 = x coordinate of start point *
' Y1 = y coordinate of start point *
' X2 = x coordinate of end point *
' Y2 = y coordinate of end point *
0 *
' RETURN: avPol yl ine2Pt = the polyine feature *
0 *
' Dim X1, Y1, X2, Y2 As Double *
' Di m avPol yl i ne2Pt As | Polyline *
' *
Public Function avPolylineMake(shapelList) As |[|Polyline
0 *
' PURPCSE: TO CREATE A POLYLINE OBJECT FROM A PO NT LIST *
' *
' G VEN: shapeli st = the list of points conprising the *
' pol yli ne *
' structure of shapelist is: *
' Item 1: collection of points in part 1*
' Repeat Item 1 for each part *
' So that, shapeList is a list of *
' collections with each collection *
' containing points *
0 *
' RETURN: avPol yl i neMake = the polyline feature *
' *
' Di m shapeLi st As New Coll ection *
' Di m avPol yl i neMake As | Pol yline *
' *
Public Function avPolylineMake2(shapeList) As |Polyline

PURPCSE: TO CREATE A POLYLINE OBJECT FROM A PO NT LIST

G VEN: shapeli st = the list of points conprising the

pol yli ne

structure of shapelist is:

Item 1: nunber of parts

Item 2: nunber of points in part 1
Item 3: x value of point 1 in part 1

* ook K K ok K ox R DT K ok ok K ok ok K % ok ok F ok F x K x KT ok ok K K ok K K ok ok % K x KT ok ok K Ok ok % % F ok K ok F F H ok F F ok ok K * F x * %

* %k k F F % Ok

D-60 Avenue Wraps

b Item 4: y value of point 1 in part 1 *
b Item 5: z value of point 1 in part 1 *
b Item 6: mvalue of point 1 in part 1 *
b Item 7: id value of point 1 in part 1*
b Item 8: Repeat Itens 3 - 7 for each *
' poi nt *
b Repeat Itens 2 - 8 for each part *
' * *
' * RETURN: avPol yl i neMake2 = the polyline feature *
TE— *
" * Dim shapeList As New Col |l ection *
' * Dim avPol yl i neMake2 As | Polyline *
' * *
Public Sub avQuantile(pmxDoc As |MDocurment, theThene, aField, nunCl ass)
TE— *
' * PURPCSE: TO SET THE LEGEND THAT |S ASSCCI ATED WTH A THEME *
o TO BE OF QUANTILE TYPE WTH THE CLASSES DETERM NED BY *
b USI NG A QUANTI LE METHCD *
' * *
' * G VEN pmxDoc = the active view *
b theTheme = theme to be processed *
tox aField = field nane that theme is to be classified *
o upon *
tox nunCl ass = nunber of classes to be generated *
' * *
' * RETURN: not hi ng *
' * *
b NOTE: (a) Divides the features in the thene into nunCl ass *
o classifications of equal size using the values in *
o aField. This is only supported for nuneric fields *
o (b) After a theme has been classified you nmust use *
tox avCet Legend to get the new legend that reflects *
o the new classification if you wish to manipulate *
tox the labels or synbols in the classification *
TR— *
' * Dim pnxDoc As | MkDocunent *
" * DimtheTheme As Variant *
" * DimaField As String *
" * DimnunC ass As Long *
TR— *

Public Sub avQuantileX(pmxDoc As | MDocument, _
t heThenme, aField, nunC ass, method)

PURPGCSE: TO SET THE LEGEND THAT |S ASSOCI ATED WTH A THEME
TO BE OF QUANTILE TYPE

G VEN: pmxDoc = the active view
theTheme = theme to be processed
aField = field nane that theme is to be classified
upon
nunCl ass nunber of classes to be generated

= classification nethod
1 : Defined Interval (not inplenented)
2 : Equal Interval
3 : Natural Breaks
4 : Quantile
5 : Standard Deviation (not inplenented)

met hod

RETURN: not hi ng

NOTE: (a) Divides the features in the thene into nunCl ass
classifications using the values in aField. This
is only supported for nuneric fields
(b) After a theme has been classified you nmust use
avCet Legend to get the new legend that reflects
the new classification if you wish to manipulate
the labels or synbols in the classification

F % sk ok ok % F ok o Ok H F ok ok ok H % ok ok F x K * F * x
$ ok ok R Rk 3k ok b ok % % 3k Sk ok 3k 3k Ok F ¥k Ok F

Di m pmxDoc As | MkDocunent

Appendix D Listing of Avenue Wraps™ D-61

Di m t heTheme As Vari ant
Dim aField As String

Di m nunCl ass As Long

Di m met hod As Long

L

* Ok k% F

*

Public Sub avQuery(pmxDoc As | MDocunent, theTheme, _
aQueryString, selSet As |SelectionSet, setType)

PURPGCSE: TO APPLY A QUERY TO A THEME OR A TABLE

G VEN: pmxDoc = the active view
t heThene = nane of theme or table to be processed
aQueryString = query string to be applied
Sanple String field query for a

Shapefil e:

aQueryStr = """PTCODE'"" + " = ' BBBR "
for a Personal geodatabase:

aQueryStr = "PTCODE = ' bbbb""

Sanple Nuneric field query for a
Shapefile and a Personal geodatabase
aQueryStr = "SLN >= 10"

sel Set = thene selection set
set Type = type of selection desired
"NEW : new selection set
"ADD' : add to selection set
"AND' : select from selection set
RETURN: not hi ng
NOTE: (a) Use avGetSelection to get the selection set that

contains the result of this query
(b) The query is applied even if the theme or |ayer
is set to be not selectable in ArcMap
(c) String queries on shapefiles are case sensitive,
while for personal geodatabases they are case
insensitive

Di m pmxDoc As | MkDocunent
Di m t heThene As Vari ant

Dim aQueryString As String
Di m sel Set As | Sel ecti onSet
Di m set Type As String

ok ok k% Xk ok o ¥ % ok ox Ok O K sk 3k 3k ok Sk E ® ok ok ok ¥ Kk ok ok ok ¥ K o F

Ok k3 ok ok ok Sk ok kR 3k 3k R R R % % ok ok % % % %k k¥ ¥ ¥k 3k F

*

Public Function avRectMakedPt (X1, VY1, X2, Y2, _
X3, Y3, X4, Y4) As |Polygon

PURPCSE: TO CREATE AN I NCLINED PCLYGON FROM COORDI NATES OF FOUR
PO NTS THAT REPRESENT THE CORNERS OF THE POLYGON

G VEN: X1 = x coordinate of corner point 1
Y1 = y coordinate of corner point 1
X2 = x coordinate of corner point 2
Y2 = y coordinate of corner point 2
X3 = x coordinate of corner point 3
Y3 = y coordinate of corner point 3
X4 = x coordinate of corner point 4
Y4 = y coordinate of corner point 4
RETURN: avRect Make4PT = the polygon feature
NOTE: The corner points are connected in series in the order

in which they are specified. A clockw se or counter-
cl ockwi se direction can be used

Dim X1, Y1, X2, Y2, X3, Y3, X4, Y4 As Double
Di m avRect Maked4Pt As | Pol ygon

L R T T T I SV
I I I T T T

D-62 Avenue Wraps

Public Function avRectMakeXY(X1l, VY1, X2, Y2) As |Polygon

T *
' PURPCSE: TO CREATE A RECTANGULAR POLYGON FROM COORDI NATES OF A *
' DI AGONAL OF THE POLYGON *
' *
' G VEN: X1 = x coordinate of diagonal start point *
' Y1l = y coordinate of diagonal start point *
' X2 = x coordinate of diagonal end point *
' Y2 = y coordinate of diagonal end point *
' *
' RETURN: avRect MakeXY = the polygon feature *
0 *
' Dim X1, Y1, X2, Y2 As Double *
' Di m avRect MakeXY As | Pol ygon *
0 *
Public Sub avRenpveDoc(aDocNane)

0 *
' PURPOSE: REMOVE THE SPECI FI ED LAYER OR TABLE FROM THE TABLE OF *
' CONTENTS (DOES NOT DELETE ANY FILES FROM Di SK) *
0 *
' G VEN: aDocNanme = nanme of thene or table to be renoved from *
' the Table of Contents *
0 *
' RETURN: not hi ng *
0 *
' NOTE: If the thene or table can not be found, the Table of *
' Contents is left unaltered and no error is generated *
0 *
0 *
0 *

lic Sub avRenoveDupStrings(theColl, caseFlag)
PURPCSE: REMOVE DUPLI CATE STRINGS OR NUMBERS FROM A COLLECTI ON

G VEN: t heCol | = collection containing strings from which

any duplicates will be renpved

caseFlag = flag denoting whether the collection is to
be processed as case sensitive or case
insensitive (upper/lower case characters

are treated the sane)

true = case sensitive, false = insensitive
RETURN: not hi ng
NOTE: (a) theColl is changed by this subroutine
(b) this subroutine will work for collections that

contain nunbers, as well as, strings
(c) if theColl contains nunbers, not strings, set the
caseFlag to be true, if it is false an error wll
be generated
(d) if theColl contains numbers and strings, set the
caseFlag to be true, if it is false an error wll
be generated

Dim theColl As New Col | ection

*
*
*
*
*
*
*
*
*
*
*
*
*
b
*
*
*
*
*
*
*
*
*
*
*
*
* Dim aDocName As String
*
b
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* Dim caseFl ag As Bool ean

$ ok kR R kR ok ok R % % ok Sk Sk 3k %k Ok ¥ ¥ 3 F F

Public Function avRenoveFiel ds(pnxDoc As | MDocunent,
t heThene, theFiel dS)

PURPOSE: TO REMOVE FIELDS FROM A LAYER OR TABLE
G VEN: pmxDoc = the active view
t heThene = the thenme or table to be processed

t heFi el ds list of fields to be renoved, the
items in this list are index values
for the fields to be deleted, they

are nuneric values not objects

* % ok ok % % F F % *
* % % ok ok X X o * *

Appendix D Listing of Avenue Wraps™ D-63

' RETURN: avRenmoveFields = error flag (0 = no error, 1 = error) *
0 *
' NOTE: (a) In order to renove fields from a layer or table *
' the editor can not be in an edit state, this *
' routine will stop the editor, saving any changes *
' that may have been nmde, prior to renobving the *
' fields *
' (b) If an invalid index value appears in the list, -1, *
' it will be ignored (an error is not generated) *
' (c) Do not use this routine to delete the SHAPE field *
' *
' Di m pmxDoc As | MkDocunent *
' Di m t heTheme As Vari ant *
' Dim theFields As New Col |l ection *
' Di m avRenoveFi el ds As | nteger *
' *
Public Sub avRenoveG aphi c(pEl ement As |Elenent)

0 *
' PURPCSE: TO DELETE A GRAPH C ELEMENT FROM THE DI SPLAY *
0 *
' G VEN: pEl enent = graphic to be del eted *
0 *
' RETURN: not hi ng *
' *
' Di m pEl enent As | El enent *
0 *

e
c

k ok R DT K K kK ok ok ok ok ok K ok KT ok ok ok K K % 4 K ok R Sk ok ok K o ok ok ok F ok F F K 4 KT ok F K K K % ok x FTT F F F K ok Ok % ok % F % % % % * x

ic Sub avRenpveRecord(pmxDoc As | MDocunent, theThene, theRcrd)

PURPCSE: DELETE A RECORD OR THE SELECTED FEATURES (ROWS) IN A
LAYER OR TABLE

G VEN: pmxDoc = the active view
theTheme = the theme or table to be processed
theRcrd = node of deletion

>= 0 : record of feature (row) for deletion

= -1 : delete selected features (rows) in a
theme or table, if there are no
selected features (rows), nothing
wll be deleted

= -2 : delete all features in a thene or
table regardl ess of the current
sel ection set

RETURN: not hi ng

NOTE: The theme or table nmust be editable prior to deleting
any features (rows) fromthe thenme or table

Di m pmxDoc As | MkDocunent
Di m theTheme As Vari ant
Dim theRcrd As Long

L T T T R N R R

Public Sub avResize(abDoc As |Unknown, aWdth, aHeight)

0 *
' PURPOSE: TO RESIZE A W NDOW OBJECT *
0 *
' G VEN: aDoc = the wi ndow obj ect *
' aWdth = the new width of the w ndow *
' aHei ght = the new height of the w ndow *
0 *
' RETURN: not hi ng *
0 *
' Di m aDoc As | Unknown *
' Dim aWdth, aHeight As Long *
0 *
Public Function avReturnArea(theGeom As |Geonetry) As Double

0 *
' PURPOSE: CGET THE AREA OF A GEOMETRY *

D-64 Avenue Wraps

" * GdVEN t heGeom = the geonetry to be processed *
TE— *
' * RETURN: avReturnArea = the area of the geonetry *
TE— *
tox NOTE: If invalid geonetry is specified, avReturnArea w |l *
tox be set to zero *
TE— *
' * DimtheGeom As | Geonetry *
' * DimavReturnArea As Doubl e *
TE— *
Public Function avReturnCenter(theGeom As |Geonetry) As |Point
TE— *
' * PURPCSE: CET THE CENTRO D OF A GEOVETRY *
TE— *
' * GdVEN t heGeom = the geonetry to be processed *
TE— *
' * RETURN: avReturnCenter = the centroid of the geonetry *
' * *
o NOTE: If invalid geonmetry is specified, avReturnCenter will *
tox be set to NOTH NG *
TR— *
' * DimtheGeom As | Geonetry *
' * Dim avReturnCenter As |Point *
TR— *
Public Function avReturnDifference(aShapel As |GCeonetry, _
aShape2 As | CGeonetry) As | Geonetry

TR— *
' * PURPCSE: TO REMOVE FROM THE BASE SHAPE THE OVERLAP WTH A *
tox SECOND SHAPE TO FORM A NEW SHAPE *
' * *
' * G VEN aShapel = base shape *
tox aShape2 = second shape whose overlap wth *
b the base shape will be renoved *
v from the base shape *
TR— *
' RETURN: avReturnDi fference = new shape reflecting the renoval *
b of the overlap from the base shape*
TR— *
' * NOTE: If there is no overlap between the two shapes the *
o shape that is passed back will be the sane as the base *
' shape *
' * *
' * Dim aShapel As |Geonetry, aShape2 As | Geonetry *
" * DimavReturnDifference As | Geonetry *
TR— *
Public Function avReturnlntersection(aShapel As |GCeonetry, _

aShape2 As | CGeonetry) As |Geonetry
TR— *
" * PURPCSE: TO | NTERSECT TWD SHAPES TO FORM A NEW SHAPE *
TR— *
' * G VEN asShapel = base shape *
tox aShape2 = second shape to be intersected *
v with the base shape *
' * *
tox RETURN: avReturnl ntersection = new shape reflecting the *
b intersection of the two shapes *
TR— *
tox NOTE: (a) If the shapes do not intersect an enpty shape will *
v be passed back *
o (b) When dealing with polygon shapes make sure the *
tox polygon is defined in a clockw se direction, if *
tox not, an intersection nay not be conputed *
TR— *
' * Dim aShapel As |Geonetry, aShape2 As |Geonetry *
' * Dim avReturnlntersection As |Geonetry *
' * *
Public Function avReturnLength(theGeom As |Geonetry) As Double
T *
T *

PURPGCSE: GET THE PERI METER OR LENGTH OF A CEOVETRY

Appendix D Listing of Avenue Wraps™ D-65

TE— *
' * dVEN t heGeom = the geonetry to be processed *
' * *
b RETURN: avReturnLength = the perineter or length of the *
o geomnetry *
TE— *
tox NOTE: For multi-part features avReturnLength will be the *
' total length, which includes all parts *
TE— *
' * DimtheGeom As | Geonetry *
' * Dim avReturnLength As Doubl e *
TE— *
Public Function avReturnMerged(aShapel As |Geonetry, _
aShape2 As | Geonetry) As | CGeonetry

TR— *
' * PURPGCSE: TO MERGE TWD SHAPES TOGETHER TO FORM A NEW SHAPE *
TE— *
' * G VEN aShapel = base shape *
tox aShape2 = second shape to be nerged with the *
tox base shape *
' * *
tox RETURN: avRet urnMerged = new shape reflecting the merging *
TR— *
' * Dim aShapel As |Geonetry, aShape2 As | Geonetry *
' * Dim avReturnMerged As | Geonetry *
' * *

Public Sub avReturnShared(aShapel As |GCeonetry, _
aShape2 As | Geonetry, aTol,
X1, Y1, X2, Y2, _

comonSid As | Polyline,
aNewShape As | Geonetry)

' * *
' * PURPCSE: TO CHANGE THE SIDE OF A SHAPE TO BE |DENTICAL TO THE *
v SIDE I N ANOTHER SHAPE BASED UPON TWO COWMON VERTI CES *
' * *
' * G VEN asShapel = base shape *
tox aShape2 = second shape to be altered to match *
b the common side with the base shape *
b aTol = proxinmity tol erance *
tox 0 : denotes use the smallest segnent *
b | ength between the two shapes *
' * *
b RETURN: X1, VY1 = first matching coordinates of the conmmon *
v side on the base shape *
o X2, Y2 = second matching coordinates of the comon *
v side on the base shape *
o comonSid = polyline representing the shared side *
b aNewShape = new shape reflecting the incorporation of *
b the common side into the second shape *
' * *
tox NOTE: If two natching vertices can not be found, the values *
o of comonSid and aNewShape will both be set to NOTH NG *
' * *
o Dim aShapel As |Geonetry, aShape2 As |Geonetry, aTol As Double *
" * Dim X1 As Double, Y1 As Double, X2 As Double, Y2 As Double *
' * DimcomonSid As |Polyline, aNewShape As | Geonetry *
' * *

Public Function avReturnUnion(aShapel As |Geonetry, _
aShape2 As | Geonetry) As | Ceonetry

PURPCSE: TO UNION TWDO SHAPES TOGETHER TO FORM A NEW SHAPE
G VEN: aShapel = base shape
aShape2 = second shape to be unioned with the

base shape

RETURN: avRet urnUni on = new shape reflecting the unioning

* K o4 ok Ok % * Ok x ¥
L R R R

Di m aShapel As |Geonetry, aShape2 As | Ceonetry

D-66 Avenue Wraps

' * Dim avReturnUnion As |Geonetry *
TE— *
Public Function avReturnVal ue(pnxdoc As | MDocunent, _

theTheme, aField, aRecord) As Variant

PURPCSE: TO RETRIEVE A VALUE IN A SPECIFIC FIELD OF A SPECIFIC
ROW (RECORD) FOR A LAYER OR TABLE

G VEN: pmxDoc = the active view
t heThene = the thene or table to be processed
aField = index value denoting field the desired
attribute is to be retrieved from
aRecord = record of the theme or table to be
processed
RETURN: avReturnValue = attribute that was retrieved (not

geonetry but data, see note bel ow)

NOTE: (a) Do not use this routine to retrieve geonmetry from
the SHAPE field, use this routine to extract
attribute data only (see avGetFeature for how to
extract the geonetry of a feature)

(b) If an error is detected avReturnValue wll be set
to NULL

Di m pmxDoc As | MkDocunent
Dim t heThene As Vari ant

Dim aFi el d, aRecord As Long
Di m avRet urnVal ue As Vari ant

F ok ok kX x ok ok % oy F kg ¥ OF ok X x ok ok F ¥ 4 F

$ Ok ok R kR 3k b R % % ok Sk Sk 3k 3k 3k F ¥ % Ok F F

*

Public Function avReturnVisExtent(pDT _
As |DisplayTransformation) As |Envel ope
*

Dim pDT As |DisplayTransformation
Di m avRet urnVi sextent As | Envel ope

T
: : PURPCSE: CET THE CURRENT EXTENT OF THE VI EW

: : G VEN: pDT = the screen display transformation
b RETURN: avReturnVi sExtent = the current extent of the view
o

(-

* %k Ok F % % % Ok F

*

Public Sub avSel ect ByFTab(pmxDoc As | MDocunent, _
el mt Theme, seltrThene, sel Mod, sel Tol, setType)
*

PURPGCSE: TO SELECT FEATURES IN A THEME BASED UPON THE SELECTED
FEATURES | N ANOTHER THEME

G VEN: pmxDoc = the active view
el mt Theme = nanme of thene to be processed
seltrThene = selector theme to be used
sel Mbd = selection node of operation
"1 NTERSECTS"

"1 SW THI NDI STANCECF"
" HASCENTERW THI N
"1 SCOVPLETELYW THI N'
sel Tol = selection distance tolerance (use O if
the shape of the features in the selector
thene are to be used as is, no buffering)

set Type = type of selection desired
"NEW : new sel ection set
"ADD' : add to selection set
"AND' : select from selection set

RETURN: not hi ng

NOTE: Use avUpdateSel ection to update the display of the
sel ected features

F ok g kR X 3k ok ok Ok % % ok Ok kX Ok ok 3k ¥ F Kk g F
$ ok ok ok R % % ok ok ok % 3k 3k 3k Ok Ok k% ok Ok Ok ¥ F

Appendix D Listing of Avenue Wraps™ D-67

pmxDoc As | MkDocunent
el mt Thene As Vari ant
seltrThene As Vari ant
sel Mod As String

m sel Tol As Doubl e

Di m set Type As String

Di
Di
Di
Di
Di

E R

* % 3k ok k% F

*

Public Sub avSel ect ByPoint(pnxDoc As | MDocunment, el mtThene,
thePoint As |Point, selTol, setType)

PURPGCSE: TO SELECT FEATURES IN A THEME BASED UPON A PO NT

G VEN: pmxDoc = the active view
el mt Theme = nanme of thene to be processed

t hePoi nt = point object to be used in the search
sel Tol = selection distance tol erance
set Type = type of selection desired
"NEW : new sel ection set
"ADD' : add to selection set
"AND' : select from selection set
RETURN: not hi ng
NOTE: Use avUpdateSel ection to update the display of the

sel ected features

Di m pmxDoc As | MkDocunent
Di m el mt Thenme As Vari ant
Di m t hePoi nt As | Poi nt

Di m sel Tol As Doubl e

Di m set Type As String

Ok Rk ok Xk oy ok Ok K % ok 3k ok * ¥ * F F x *

SOk ok ok k3 ok ok 3k 3k ¥ F k% % ok ok k¥ F

*

Public Sub avSel ect ByPol ygon(pmxDoc As | MkDocunent, _
el mt Thenme, theGeom As | CGeonetry, setType)
*

L
' * PURPCSE: TO SELECT FEATURES IN A THEME BASED UPON A POLYGON *
TR— *
' * G VEN pmxDoc = the active view *
tox el mt Theme = nanme of thene to be processed *
b t heGeom = geonetry to be used *
' set Type = type of selection desired *
o "NEW : new selection set *
o "ADD' : add to selection set *
b "AND' : select from selection set *
TR— *
' * RETURN: not hi ng *
TR— *
b NOTE: Use avUpdateSel ection to update the display of the *
tox sel ected features *
' * *
' * Dim pnxDoc As | MkDocunent *
' * DimelmtThenme As Variant *
' * DimtheGeom As | Geonetry *
" * DimsetType As String *
TR— *
Public Sub avSetActive(pnxDoc As | MDocunent, theThenme, sStatus)

' * *
' * PURPOSE: TO MAKE A THEME SELECTABLE OR NOT *
' * *
' * G VEN pmxDoc = the active view *
b theTheme = theme to be processed *
o sStatus = selectable status (True = selectable) *
b (False = not selectable) *
TR— *
' * RETURN: not hi ng *
TR— *
' * Dim pnxDoc As | MkDocunent *
" * DimtheTheme As Variant *
T *

Dim sStatus As Bool ean

D-68 Avenue Wraps

' * *
Public Sub avSetAlias(col, anAlias)

TR *
' * PURPCSE: ASSIGN AN ALIAS TO A FIELD FOR A LAYER OR TABLE *
TE— *
' * G VEN col = index value representing the field that an *
b alias is to be assigned to *
tox anAlias = the alias to be assigned to the field *
TE— *
' * RETURN: not hi ng *
TE— *
o NOTE: The current layer/table is processed, the subroutines *
o avCet FTab or avCetVTab can be used to establish the *
v current layer or table *
TR— *
' * Dimcol As Long *
" * DimanAlias As String *
TR— *

Public Sub avSetAl |l (pmxDoc As | MDocunment, theTheneg,
psTabl eSel As |Sel ectionSet)

avUpdat eSel ection to update the display so that the
sel ected features can be seen

Di m pmxDoc As | MkDocunent
Di m theTheme As Vari ant
Di m psTabl eSel As | Sel ecti onSet

0 *
' PURPCSE: TO SELECT ALL OF THE FEATURES OR ROMS FOR A LAYER OR *
' TABLE *
0 *
' G VEN: pmxDoc = the active view *
' t heThene = the thene or table to be processed *
' *
' RETURN: psTabl eSel = the selection set for the theme or table *
' with all features or rows selected *
0 *
' NOTE: Following the call to this subroutine make a call to *
0 *
' *
' *
' *
' *
0 *
0 *

ic Sub avSetEditabl e(pnxDoc As | MDocunment, theThene, eStatus)

PURPGCSE: START OR TERM NATE THE EDI TING ON A LAYER OR TABLE

G VEN: pmxDoc = the active view
theTheme = theme or table to be processed
eStatus = editing status (True = start editing)

(Fal se = stop editing)
RETURN: not hi ng

NOTE: (a) For layers the editing is not term nated but
rather any buffered wites are sinply flushed.
For tables the editing is termnated. To
termnate the editing on layers use the subroutine
avSt opEdi ti ng.

(b) If the layer or table is to be made editable and
the layer or table is already editable, no action
will be taken and the layer or table will remain

edi tabl e

Di m pmxDoc As | MkDocunent
Dim t heThene As Vari ant
Dim eStatus As Bool ean

I T T I NN R

ic Sub avSetEditabl e2(aLayer As |FeaturelLayer, eStatus)

PURPGCSE: START OR TERM NATE THE EDI TING ON A LAYER

* % F o KT Ok ok ko F 3k sk ok ok F x K ok ok ¥ Ok Ok X x ok * F 5 FXT F Kk ok ok F X ok o ¥ ok x F ok * F F 3 X

* %k ok F

G VEN: alayer = layer to be processed
eStatus = editing status (True = start editing)

Appendix D Listing of Avenue Wraps™ D-69

(False = stop editing)
RETURN: not hi ng

NOTE: (a) Any edits that may have been nade to the layer are
conmmitted to disk when eStatus is Fal se
(b) If the layer is to be nade editable and the |ayer
is already editable, no action will be taken and
the layer will remain editable

Di m aLayer As | FeatureLayer
Di m eStatus As Bool ean

ic Sub avSetEditabl eTheme(pnxDoc As | MDocunent, theThene, theType
PURPOSE: SCRIPT TO SET THE TYPE OF TASK FOR EDI TING A THEME

G VEN: pmxDoc = the active view
theTheme = the thene to be processed
if NULL, editor will be stopped saving any
edits that may have been mmde

theType = the type of task to be perforned, if not
equal to zero will set the current task of
the editor
0 = stop sketch session
1 = nodify feature (this will start a
sketch session), for polylines and
pol ygons, handles will be drawn at
the vertices conposing the feature
2 = create new feature
9 = sane as O except assign the current

sketch geonetry to the feature that
is stored globally (uglLastFeatureSV)
NULL = do not hing

RETURN: not hi ng

NOTE: The gl obal variable ugSketch is used to keep track of
whet her a sketch session is active or not. I|f the
val ue of ugSketch = 0, a sketch session is not active,
if ugSketch = 1, a sketch session is active

Di m pmxDoc As | MkDocunent
Di m theTheme As Vari ant
Dim theType As Variant

Ok R kR kb ok kR F 3k 3k R R 3k 3k 3k R R 3k ok o 3k 3k 3k RN 3k 3k Ok Ok % % %k ok ok ¥ ¥ * *

ic Function avSetExtension(aPath, aExt) As String
PURPCSE: SET THE FILE EXTENSION IN A BASE NAME OR A PATH NAME

G VEN: aPat h = a base nane or a full path name to be
processed, the base nanme may or nay
not contain an extension

aExt = extension to be set on the base nane,
should not contain a period, just the
desired three character extension, if
the base nane has an extension, it
will be changed to aExt, if it does
not, aExt is added to the base nane

RETURN: avSet Extension = the new base name or full path nane
with the specified extension applied

NOTE: If aExt is a blank character (i.e. akExt =" ") or if
the length of aExt is 0, the extension associated with

aPath will be rempbved, in so doing, the programmer is

able to renove an extension from a nane

% ok ok ok % K ok o Ok Nk Nk ok ok ok Kk F F %k Ok x KT K ok ok ok K X % ok x K F Ok 3k ok ok ¥ F * ok ok ¥ F Kk ok ok ¥ ¥ *F * * x * T F * ok k ¥ % ok *k x ¥ ¥ *F *

$ ok ok kR % % ok ok ok % % 3k 3k 3k ¥ ¥ 3k 3k Ok F

Dim aPath, aExt As String

D-70 Avenue Wraps

' * Dim avSet Extension As String *
TE— *
Public Sub avSetExtent(pActiveView As |ActiveView, _

pDT As | DisplayTransformation,

newRect As | Envel ope)

PURPOSE: SET THE CURRENT EXTENT OF THE VI EW

G VEN: pActiveView = the active view
pDT = the screen display transformation
newRect = view extent rectangle

RETURN: not hi ng

Di m pActiveView As |ActiveView
Dim pDT As |DisplayTransformation
Di m newRect As | Envel ope

I R

Public Sub avSet G aphicsLayer(theG.,ayer, pCurGaLyr As |G aphicsLayer)
PURPCSE: TO SET THE CURRENT ANNOTATI ON TARGET LAYER AS THE
BASI C GRAPHI CS LAYER OR CREATE A NEW USER DEFI NED
GRAPHI CS LAYER

G VEN: t heGLayer = graphics layer to contain the graphics
that are subsequently created, if NULL
is specified for this argunent this wll
indicate that the basic graphics layer is
to get the graphics that are subsequently

created
RETURN: pCurGraLyr = graphics layer that will contain the user
programmed graphics
NOTE: (a) If theG.ayer name specified exists, it wll not
be deleted, but rather, wll become the current
graphics layer, a new graphics layer will not be
created thus any graphics generated will be added

to the layer
(b) A Map Units setting nust be applied to the map in
order for this subroutine to operate, if one is
not, an automation error nmessage wll be generated

Di m t heGLayer As Variant
Di m pCur GraLyr As |G aphicslLayer

* Ok ok ok F k¥ ok o F ok X T Ok ok F R % ok ok K ok ok ¥ o F ko4 Ok F ok ok X F g K Ok % oy KT ¥k ok K F F F ok % F F ok F
® % ok % ok ok F Ok Ok k ok ok X Ok ok F Ok F ¥ ok ok X ok F * F

Public Sub avSetName(aTitle)

' *
' PURPOSE: TO SET THE CAPTION OF THE APPLI CATI ON *
0 *
' G VEN: aTitle = name of the application to appear in the *
' upper left corner of the application w ndow *
' *
' RETURN: not hi ng *
0 *
' NOTE: To set the name for a layer or table the user should *
' use the subroutine avOoj Set Nanme *
' *
' Dim aTitle As String *
TR— *
Public Sub avSetSelection(pmkDoc As | MDocurment, theThene,

psTabl eSel As | Sel ectionSet)

' * *
' * PURPCSE: SET THE SELECTED SET FOR A LAYER OR TABLE *
TR— *
' * G VEN pmxDoc = the active view *
tox t heThene = the thene or table to be processed *
b psTabl eSel = the selection set for the theme or table *
TR— *

Appendix D Listing of Avenue Wraps™ D-71

' * RETURN: not hi ng *
' * *
' * Dim pnxDoc As | MkDocunent *
" * DimtheTheme As Variant *
' * Dim psTabl eSel As | Sel ectionSet *
TE— *
Public Sub avSetSelectionlDs(pmkDoc As | MDocunent,
t heThene, sel RecslList)

TE— *
' * PURPCSE: DEFI NE A SELECTION SET G VEN A COLLECTION OF QDS *
' * *
' * G VEN pmxDoc = the active view *
b t heTheme = thene to be processed *
o sel RecsList = the list of ODs for the selection set *
TR— *
' * RETURN: not hi ng *
TE— *
' * Dim pnxDoc As | MkDocunent *
" * DimtheTheme As Variant *
' * Dim sel RecsList as New Col | ection *
TR— *

Public Sub avSet Sel Features(pnxDoc As | MDocunent, _
sel Thnli st, sel RecLi st)

PURPGCSE: TO SET THE SELECTED FEATURES FOR A SET OF THEMES

G VEN: pmxDoc = the active view
sel ThnList = list of themes with selected features
sel RecList = list of selected features record nunbers

RETURN: not hi ng

NOTE: (a) The records selected here will be added to the
current selected set for the thene
(b) Following the call to this subroutine make a call
to avUpdateSel ection to update the display so that
the selected features can be seen
(c) structure of sel Thnlist is:
Item 1: nane of thenme 1
Item 2: nunber of selected features in thene 1
Item 3: nanme of thene 2
Item 4: nunber of selected features in thene 2
Repeat Itens 1 and 2 for each thene
(d) structure of sel RecList is:
Item 1: selected feature 1 OD in theme 1
Item 2: selected feature 2 OD in theme 1
Repeat Item 1 for each selected feature in thene 1
Item 3: selected feature 1 OD in theme 2
Item 4: selected feature 2 OD in theme 2
Repeat Item 3 for each selected feature in thene 2

Di m pmxDoc As | MkDocunent
Di m sel ThnLi st As New Col | ection
Di m sel RecLi st As New Col | ection

® % ok ok K ok ok ok ok ¥ % Ok X % ok sk Ok Ok ko ok ¥ x F F F % % ¥ k x *
T R I S S I I I I N S I R R

Public Sub avSetSel Features2(pnmxdoc As | MDocunent, _
sel Thnli st, sel RecLi st)

PURPCSE: TO SET THE SELECTED FEATURES FOR A SET OF THEMES
SUCH THAT THE ARCMAP EDIT TOOLS CAN PROCESS THEM
G VEN: pmxDoc = the active view
sel ThnList = list of themes with selected features

sel ReclLi st list of selected features record nunbers

RETURN: not hi ng

* o F Ok X o ok ok F ok ¥ *
* % % ok ok F F 3k k% ok *

NOTE: (a) This subroutine is simlar to avSetSel Features
with the exception that the selected features set

D-72 Avenue Wraps

by this subroutine can be manipulated by ArcMap's
edit tools. The selected features set with the
avSet Sel Feat ures subroutine can not be
(b) The records selected here will be added to the
current selected set for the thene
(c) Following the call to this subroutine make a call
to avUpdateSel ection to update the display so that
the selected features can be seen
(d) structure of sel Thnist is:
Item 1: nanme of thenme 1
Item 2: nunber of selected features in thene 1
Item 3: nane of thene 2
Item 4: nunber of selected features in thene 2
Repeat Itens 1 and 2 for each thene
(e) structure of sel RecList is:
Item 1: selected feature 1 OD in theme 1
Item 2: selected feature 2 OD in theme 1
Repeat Item 1 for each selected feature in thene 1
Item 3: selected feature 1 OD in theme 2
Item 4: selected feature 2 OD in theme 2
Repeat Item 3 for each selected feature in thene 2

Di m pmxDoc As | MkDocunent
Di m sel ThnLi st As New Col | ection
Di m sel RecLi st As New Col | ection

ok ok k% % ok ok k% Ok ok ok k% K ok Ok ok % K * F F o

I T I T I N

*

Public Sub avSetVal ue(pnxDoc As | MDocurment, theThene,
aFi el d, aRecord, an(j)

PURPGCSE: TO STORE A VALUE IN A SPECIFIC FIELD OF A SPECIFIC
ROW (RECORD) FOR A LAYER OR TABLE

G VEN: pmxDoc = the active view

theTheme = the theme or table to be processed

aField = index value denoting field to be witten to

aRecord = record of theme or table to be processed

an(bj = object to be stored (not geonetry but only
attribute informati on, see note a bel ow)
set this value to be the string, StoreRec,
when the record, aRecord, is to be witten

to disk, see note b bel ow

RETURN: not hi ng

NOTE: (a) Do not use this routine to store geonetry in the
SHAPE field, use this routine to store attribute
information only. Use avSetValueG to store

geonetry in the SHAPE field
(b) This procedure does not wite the record, aRecord,
to disk until the procedure is called with the
argunent, anObj, set to "StoreRec". This is done
to elimnate multiple disk wites thereby yielding
i ncreased perfornance
(c) Wen the argunent, anOhj, is set to "StoreRec",
the argument, aField, is ignored

Di m pmxDoc As | MkDocunent

Di m t heTheme As Vari ant

Dim aFi el d, aRecord As Long
Dim anObj As Vari ant

¥ ok kb R ok %k ok ok k% % ok ok ok ¥ K F 3k ok ok k% % ok Ok K ¥ ok g F

Ok R Rk Rk ok ok Rk 3k 3k 3k Rk kR b b % % 3k %k %k ¥ ¥ 3k 3k Ok F F

*

Public Sub avSetVal ueG pnmkDoc As | MDocunent, theTheme, _
aFi el d, aRecord, aShape As | Geonetry)

TR— *
' * PURPCSE: TO STORE A SHAPE IN THE SHAPE FIELD OF A SPECIFIC ROW *
v FOR A LAYER *
' * *
' * G VEN pmxDoc = the active view *
T *

theTheme = the thene to be processed

Appendix D Listing of Avenue Wraps™ D-73

o aField = the shape field (not used but included only *
b for conpatibility purposes) *
o aRecord = record of theme or table to be processed *
o aShape = shape to be stored (not attribute data but *
b only geonetry, see note a bel ow) *
' * *
' * RETURN: not hi ng *
' * *
b NOTE: (a) Do not use this routine to store attribute data, *
o use this routine to store geonetry only. Use the *
b routine avSetValue to store attribute data. *
b (b) This procedure will wite the record to disk after *
b the shape has been stored. *
b (c) Calling this procedure after calling avSetVal ue *
b elimnates the need to call avSetValue with the *
tox anCbj argunent set to "StoreRec" because this *
b procedure wites the record to disk *
' * *
' * Dim pnxDoc As | MkDocunent *
" * DimtheTheme As Variant *
' * DimaField, aRecord As Long *
' * Dim aShape As | Geonetry *
TR— *
Public Sub avSetVisible(name, aStatus)

' * *
' * PURPCSE: TO SET THE VISIBILITY STATUS OF AN OBJECT *
TR— *
" * G VEN name = name of input object for which its *
b visibility status is to be defined *
tox aStatus = the visible state of the input object *
o true = visible, false = not visible *
' * *
' * RETURN: not hi ng *
TR— *
' * Dimname As Variant *
' * Dim aStatus As Bool ean *
' * *
Public Sub avSetWorkDir (theWorkDir)

TE— *
' * PURPOSE: SET THE CURRENT WORKI NG DI RECTORY *
TR— *
' * G VEN thewsrkDir = the new working directory *
TR— *
' * RETURN: not hi ng *
TR— *
' * DimtheWwrkDir As String *
TR— *
Public Sub avShowMsg(aMessage)

' * *
' * PURPCSE: DI SPLAY A MESSAGE IN THE STATUS BAR AREA *
TR— *
' * GdVEN aMessage = the nessage to be displayed *
TR— *
' * RETURN: not hi ng *
' * *
' * Dim aMessage As String *
TR— *
Public Sub avShowStopButton()

T~ *
" * PURPCSE: DI SPLAY THE STOP BUTTON ON THE PROGRESS BAR *
' * *
' * dVEN not hi ng *
TR— *
' * RETURN: not hi ng *
TR— *
b NOTE: Use of this command will result in the progress bar *
o appearing in the mddle of the display and not in the *
tox status bar area *
TR— *

D-74 Avenue Wraps

Public Sub avSingleSynbol (pmxDoc As | MkDocunent, _
t heTheme, pDesc, pLabel, pSym As | Synbol)

PURPGSE: TO SET THE LEGEND THAT |S ASSOCI ATED WTH A THEME TO
BE OF SINGLE SYMBOL TYPE

o}
<
m
z

pmxDoc = the active view

t heTheme thene to be processed

pDesc renderer description
pLabel = label (appears in the Table of Contents)
pSym = synbol used to draw every feature in thene

RETURN: not hi ng

NOTE: (a) Al features in the theme will be classified such
that every feature is drawn using the sane
synbol ogy: color, etc.
(b) pDesc and pLabel can be specified as NULL and pSym
as NOTHING if default values are to be used for
these paraneters
(c) After a theme has been classified you nmust use
avCet Legend to get the new legend that reflects
the new classification if you wish to manipulate
the labels or synbols in the classification

m pnxDoc As | MkDocunent
m t heTheme As Vari ant
m pDesc As String

m pLabel As String

m pSym As | Synbol

F Ok Ok kX Ok ok ok ok x F F ok F F o K Ok Ok o ok * k * Ok * 4 *

Di
Di
Di
Di
Di

$ ok ok R R kR 3k b bk ok k¥ 3k 3k 3k Ok Ok % % ok Ok Ok ¥ F

*

Public Sub avSplit(aShapel As |Ceonetry, _
aShape2 As | Geonetry, shapelist)

PURPCSE: TO SPLIT A SHAPE USING A SECOND SHAPE AS THE SPLI TTER
G VEN: aShapel = shape to be split

aShape2 = shape to be used as the split line
RETURN: shapeList = list of new shapes created as a result of

the splitting process

Di m aShapel As | Geonetry
Di m aShape2 As | Geonetry
Di m shapeLi st As New Col |l ection

I L A O R

Pu

ic Sub avStartOperation()
PURPGCSE: TO START AN OPERATION WTHIN AN EDI T SESSI ON
G VEN: not hi ng
RETURN: not hi ng

NOTE: (a) The global variable ugEditMde is used to keep
track of if an operation is or is not in progress
If the value of ugEditMdde is O, an operation has
not been started, if ugEditMdde is 1, an operation
has been started. A new operation can not be
started if one is currently in progress
(b) The theme or table nust be editable prior to using
this subroutine
(c) If an error occurs during the processing of this
subroutine, no error message wll be generated,
but rather, the subroutine will sinply gracefully
termnate w thout displaying an error nessage

F ook ok % % Ok ok k¥ X ok ok o K K F 3k F x KT F ok ok ok ¥ X 4 k¥ X X 4 F

I T T R I R R NN

Appendix D Listing of Avenue Wraps™ D-75

Public Sub avStopEditing()
*

0 *
' PURPCSE: TERM NATE THE EDI TING ON ALL LAYERS AND TABLES *
' *
' G VEN: not hi ng *
0 *
' RETURN: not hi ng *
0 *
' NOTE: (a) This command when used will enpty the Undo list so *
' that the user will not be able to use the Edit sub *
' menu item Undo (all edits are commtted to disk) *
' (b) If the editor is not in an edit state, an error *
' message wWill not be generated, but rather, no *
' action will take place *
0 *
' Di m pmxDoc As | MkDocunent *
' Di m theTheme As Vari ant *
0 *

Public Sub avStopOperation(oprMssg)

PURPCSE: TO STOP AN OPERATION WTHIN AN EDI T SESSI ON

G VEN: oprMssg = edit operation nessage that will appear to
the right of the Undo nenu item under the
Edit menu item

RETURN: not hi ng

NOTE: This subroutine does not stop the editor, it wll only
termnate an operation. Wwen the editor is stopped, it
is not possible to use the Undo command under the Edit
menu item so that, if the Undo command is to be used,

the Editor nust be active (in use)

Di m opr Mssg As Vari ant

* ok kK ok ok ok % F R K E % 4 K % R T K F ok K Gk ok ok % * x ¥ F F ok * x

I T I O

Public Function avSummarize(pnxDoc As | MDocunent, theTheneg,
aFi | eNane, aType, aField, _
fieldList, sunryList) As |Table

PURPGCSE: TO SUMVARI ZE A THEME OR A TABLE ON A SPECI FIC FIELD
THE RECORDS PROCESSED ARE THOSE THAT ARE SELECTED

G VEN: pmxDoc = the active view
t heTheme = thene or table to be processed
aFi | eName = nane of the output table to be created,
table will be stored in the workspace of

the thene or table that is summarized so
do not specify a full pathname and do
not include an extension such as .dbf
If an extension appears in the name it

will be rembved with no error generated
aType = type of output table
"dBase"
aField = field that theme or table summarized on
fieldList = list of fields to be summarized
sunryLi st = type of summary to be performed on itens

in the fieldList (operation codes)
Di ssolve (for use on the Shape field)
Count
M ni mum
Maxi mum
Sum
Aver age
Vari ance
St dDev

RETURN: avSummarize = list of attributes in sumarized table,
will be set to NOTHING if an error was

¥ g Kk ok ok Kk ok K % ok ok ok ok Ok % % ok ok X ok ok k¥ Ok K % % *
® ook Kk ok ok Kk ok K K ok ok K ok ok K K ok ok K ok ok K K ok K K ok ok

D-76 Avenue Wraps

encountered during the processing

NOTE: (a) Since this routine passes avSummarize as NOTHI NG
if an error is detected, make sure to check for
this in the code that calls this function

(b) If fieldList and sunryList are enpty lists or
passed in as NOTH NG default values will be used,
that is, Count.aField and Maxi mum aField

(c) If the table to be created exists on disk, the
routine will overwite the existing table w thout
asking or informing the user

(d) If the table contains selected records, then only

the selected records will be processed, if there
are no selected records, then the entire table
wi |l be processed

Di m pmxDoc As | MkDocunent

Di m t heTheme As Vari ant

Di m aFil eName, aType, aField As String

Dim fieldList, sunryList As New Collection
Di m avSummarize As | Table

Public Function avSynbol Get Angl e(aSyniyp, pSynbol As |[Synbol) As Doubl

PURPGCSE: TO CET THE ANGLE ASSIGNED TO A GRAPHI C SYMBOL

G VEN: aSynTyp = type of synbol to be processed
PEN : line synbol
MARKER : point synbol
FI LL : pol ygon synbol
pSynbol = synbol to be processed
RETURN: avSynbol Get Angle = angle assigned to synbol (degrees)
NOTE: (a) This routine processes only MARKER synbols, the
PEN and FILL synbols will result in a value of

zero for avSynbol Get Angl e
(b) For text synbols use avG aphicTextGetAngle to get
the text angle

Di m aSynmlyp As String
Di m pSynmbol As | Synbol
Di m avSynbol Get Angl e As Doubl e

Public Function avSynbol Get Col or (aSyniyp, pSynbol As |[Synbol) As iColo

PURPGCSE: TO CGET THE COLOR ASSIGNED TO A GRAPHI C SYMBOL

G VEN: aSynTyp = type of synbol to be processed
PEN : line synbol
MARKER : point synbol
FI LL : pol ygon synbol
TEXT : text synbol

pSynbol = synbol to be processed
RETURN: avSynbol Get Col or = col or assigned to synbol
NOTE: It is possible for avSynbol GetColor to be NOTH NG so

make sure to check for this condition before using the
result (i.e. some polygon fills have no color, so that
avSynbol Get Col or will be NOTHI NG in those instances)

Di m aSynmlyp As String
Di m pSynmbol As | Synbol
Di m avSynbol Get Col or As i Col or

ok ok Ok x ox ok o K ok K ok Rk Ok 3k ok kX x R T Ok ok ok kK E o 3k ok oy Ok gk ok Sk kX o 2k o R T K F ok ok Ok Ok kX ok ok ok K ¥ %k ok ¥ ¥ K 3k g F *
¥ % ok ok ok ok ok F ok ok ok kX ok F ok ok ok F k| ok ok X X ok ok F F ok K F ok ok X X X *F *F ok F K (D F F F F F X *F *F ok ok ok F F ok F * * ¥ * * * *

Appendix D Listing of Avenue Wraps™ D-77

Public Function avSynbol Get OLCol or (aSynilyp, _
pSynbol As | Synbol) As i Color

assigned to avSynbol Get Si ze

Di m aSynmlyp As String
Di m pSynmbol As | Synbol
Di m avSynbol Get Si ze As Doubl e

TE— *
b PURPOSE: TO GET THE QUTLINE COLOR ASSIGNED TO A GRAPH C SYmBOL *
TE— *
' * G VEN aSynTyp = type of synbol to be processed *
v PEN : line synbol *
v MARKER : point synbol *
v FI LL : pol ygon synbol *
b pSynbol = synbol to be processed *
TE— *
b RETURN: avSynbol Get OLCol or = color assigned to synbol *
' * *
tox NOTE: It is possible for avSynbol GetOLColor to be NOTH NG so *
o make sure to check for this condition before using the *
b result (i.e. some polygon fills have no color, so that *
b avSynbol Get OLCol or will be NOTH NG in those instances) *
TR— *
" * Dim aSynTyp As String *
" * Dim pSynbol As | Synbol *
' * Dim avSynbol Get OLCol or As i Col or *
TR— *
Public Function avSynbol Get OLW dt h(aSynilyp, _
pSymbol As | Synbol) As Doubl e

' * *
b PURPOSE: TO GET THE QUTLINE WDTH ASSIGNED TO A GRAPH C SYMBOL *
TR— *
" * G VEN aSynTyp = type of synbol to be processed *
v PEN : line synbol *
v MARKER : point synbol *
v FI LL : pol ygon synbol *
b pSynbol = synbol to be processed *
TR— *
' RETURN: avSynbol Get OWdth = outline width assigned to synbol *
TR— *
tox NOTE: For PEN synbols the width of the synbol is assigned to *
b avSynbol Get LW dth, for MARKER synbols if the outline *
o is to be drawn the outline size is returned, otherw se *
v the size of the marker will be returned *
' * *
" * Dim aSynTyp As String *
" * Dim pSynbol As | Synbol *
' * Dim avSynbol Get OLWdth As Doubl e *
' * *
Public Function avSynbol GetSize(aSyniTyp, pSynbol As |1Synbol) As Double
TE— *
" * PURPCSE: TO GET THE SIZE ASSIGNED TO A GRAPHI C SYMBOL *
TR— *
' * G VEN aSynTyp = type of synbol to be processed *
' PEN : line synbol *
v MARKER : point synbol *
v FILL : pol ygon synbol *
v TEXT : text synbol *
b pSynbol = synbol to be processed *
TR— *
' * RETURN: avSynbol Get Si ze = size assigned to synbol *
TR— *
' * NOTE For PEN and FILL synbols the width of the synbol is *
T *
TR— *
T *
TR *
T *
0 *

*

Public Function avSynbol GetStipple(aSynlyp, _
pSynbol As |Synbol) As IMiltilLayerFill Synbol
*

' *

o PURPGCSE: TO GET THE STIPPLE ASSIGNED TO A GRAPHI C SYMBCOL *

' * *

D-78 Avenue Wraps

' * G VEN aSynTyp = type of synbol to be processed *
v PEN : line synbol *
v MARKER : point synbol *
v FI LL : pol ygon synbol *
b pSynbol = synbol to be processed *
' * *
o RETURN: avSynbol Get Stipple = IMiltilLayerFill Synbol interface *
b for the synbol if it is of this *
b type, otherw se, NOTH NG *
' * *
b NOTE: Since there is no direct correlation between ArcView *
b .Stipple request and an ArcObject nethod or property, *
o we will use this macro to return an object of type *
o I Mul tiLayerFill Synmbol provided the synmbol is of that *
tox type, otherwi se, NOTH NG will be passed back *
' * *
" * Dim aSynTyp As String *
" * Dim pSynbol As | Synbol *
' * Dim avSynbol Get Stipple As IMiltilLayerFill Synbol *
' * *

Public Function avSynbol Get Styl e(aSynmlyp, _
pSynbol As | Synbol) As Vari ant

PURPGCSE: TO CET THE STYLE ASSIGNED TO A GRAPHI C SYMBOL

G VEN: aSynTyp = type of synbol to be processed
PEN : line synbol
MARKER : point synbol
FI LL : pol ygon synbol
pSynbol = synbol to be processed
RETURN: avSynbol Get Style = style assigned to synbol,

vari es dependi ng upon synbol type
for PEN synbol s

0 : Solid
1 : Dashed
2 : Dotted
3 : dashes & dots
4 dashes & double dots
5 : Is invisible
6 : Fit into bounding rectangle
for MARKER synbol s
0: Grcle
1 : Square
2 . Cross
3: X
4 : Dianond
for FILL synbols
0 : Solid
1 : Enpty
2 : Horizontal hatch
3 : Vertical hatch
4 : 450 left-to-right hatch

5 : 450 left-to-right hatch
6 : Horz. and vert. crosshatch
7 : 450 crosshatch

NOTE: This routine processes only |SinpleLineSynbol,
| Si npl eMar ker Synbol and | SinpleFill Synbol type synbols

Di m aSynmlyp As String
Di m pSynmbol As | Synbol
Di m avSynbol Get Styl e As Vari ant

L T T T L R N S RN N

e
c

F % ok KT K ok ok ok ok oy ox Ok Gk 3k ok ok Sk 3k Ok Ok Ok % % ok ok ok ¥ ok 3k Ok K Ok % X ok o K ¥ % ok Ok ¥ ¥ x F

lic Function avSynbol Make(aSynlyp) As | Synbol

PURPCSE: TO CREATE A NEW GRAPHI C SYMBOL

N

G VEN: aSynTyp = type of graphic to be created

Appendix D Listing of Avenue Wraps™ D-79

' PEN : line synbol *
' MARKER : point synbol *
' FI LL : pol ygon synbol *
0 *
' RETURN: avSynbol Make = synbol describing a graphic that can be *
' added to the graphics |ayer *
' *
' NOTE: (a) This routine will create only |SinplelLineSynbol, *
' I Si mpl eMar ker Synbol and | Si npl eFi | | Synbol type *
' synbol s *
' (b) For text synbols use MkeTextSynbol to create a *
' text synmbol or avG aphicTextMake to create a text *
! el enent *
0 *
' Di m aSynmlyp As String *
' Di m avSynbol Make As | Synbol *
0 *
Public Sub avSynbol Set Angl e(aSyniTyp, pSynbol As |Synbol, aAngle)

0 *
' PURPCSE: TO SET THE ANGLE OF A SYMBOL *
0 *
' G VEN: aSynmTyp = type of synbol to be processed *
' PEN : line synbol *
' MARKER : point synbol *
' FILL : pol ygon synbol *
' pSynbol = synbol to be processed *
' aAngle = angle to be assigned (degrees) *
0 *
' RETURN: not hi ng *
' *
' NOTE: For text synbols use avG aphicTextSetAngle to define *
' the text angle *
0 *
' Di m aSynmlyp As String *
' Di m pSynmbol As | Synbol *
' Di m aAngl e As Vari ant *
0 *

Public Sub avSynbol Set Col or (aSynmlyp, pSynbol As |Synbol, aColor)

PURPCSE: TO SET THE COLOR FOR A SYMBCL

G VEN: aSynmTyp = type of synbol to be processed
PEN l'i ne symbol
MARKER : point synbol
FILL : pol ygon synbol
TEXT : text synbol
pSynbol = synbol to be processed
aColor = color to be assigned, if numeric will refer

to a R& color index value, otherw se one of
the predefined values |isted bel ow

WH TE

BLACK

BLUE

GREEN

YELLOW

CYAN

BROMWN

RETURN: not hi ng

Di m aSynmlyp As String
Di m pSynbol As | Synbol
Di m aCol or As Vari ant

® ok sk k F E F ok ok ok ok ok ok b b ok b R ok ok x F Ok Ok F k& kX T ok ok ok o R % 4 Kk ok Ok ok ok % % % F ok KT ok ok % F Kk % % F ok g F K 4 F ok ok Ok

Ok 3k R Rk 3k ok Sk ok o F k k kR Ok 3k 3k Ok O Ok % % ok %k %k ¥ F 3 F

D-80 Avenue Wraps

Public Sub avSynbol Set OLCol or (aSynilyp, pSynbol As |Synbol, aColor)
*

PURPCSE: TO SET THE OUTLINE COLOR FOR A SYMBOL

G VEN: aSynTyp = type of synbol to be processed
PEN l'i ne symbol
MARKER : point synbol
FILL : pol ygon synbol
pSynbol = synbol to be processed
aColor = color to be assigned, if numeric will refer

to a RE color index value, otherw se one of
the predefined values |isted bel ow

WH TE

BLACK

BLUE

GREEN

YELLOW

CYAN

BROMWN

ORANGE

RED

MAGENTA

GRAY

LI GHT GRAY

RETURN: not hi ng

NOTE: For PEN synbols the color of the synbol is set to the
val ue of aColor, for MARKER synbols the outline
property is set to be true, denoting that the outline
for the marker is to be drawn, and the outline color

is set to the value of aCol or

Di m aSynmlyp As String
Di m pSynmbol As | Synbol
Di m aCol or As Vari ant

Sk R Rk R ok ok ok Sk Sk ok ok kO 3k 3k R R R % % ok ok ok % % 3k k¥ ¥ ¥

ic Sub avSynbol Set OLW dt h(aSynTyp, pSynbol As |Synbol, aWdth)

PURPCSE: TO SET THE OUTLINE WDTH FOR A SYMBOL

G VEN: aSynmTyp = type of synbol to be processed
PEN l'i ne symbol
MARKER : poi nt synbol
FILL : pol ygon synbol
pSynbol = synbol to be processed
awWdth = outline width to be assigned, a value of

zero denotes no outline is to be drawn
RETURN: not hi ng

NOTE: For PEN synbols the width of the synbol is set to the
value of awdth, for MARKER synbols the outline
property is set to be true, denoting that the outline
for the marker is to be drawn, and the outline w dth

is set to the value of aWdth

Di m aSynmlyp As String
Di m pSynmbol As | Synbol
Dim aWdth As Variant

L I T T T

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Pub
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
b
*
*
*
*
*
*
*

Public Sub avSynbol Set Si ze(aSynTyp, pSynbol As |[|Synbol, aSize)

0 *
' PURPOSE: TO SET THE SIZE OF A SYMBOL *
0 *
' G VEN: aSynmTyp = type of synbol to be processed *
' PEN l'i ne symbol *
0 *
' *

MARKER : point synbol
FILL : pol ygon synbol

Appendix D Listing of Avenue Wraps™ D-81

TEXT : text synbol
pSynbol = synbol to be processed
aSi ze = size to be assigned (greater than zero)
RETURN: not hi ng
NOTE: For PEN and FILL synbols this routine works the sane

as avSynbol Set OLW dt h

Di m aSynmlyp As String
Di m pSynmbol As | Synbol
Dim aSi ze As Vari ant

* ok ok kK 4 kK K % o *

I R

*

Public Sub avSynbol Set Stippl e(aSynTyp, pSynbol As |Synbol, _
aStipple As | MiltilLayerFill Synbol)

PURPCSE: TO SET THE STIPPLE OF A SYMBOL

G VEN: aSynmTyp = type of synbol to be processed
PEN l'ine synbol
MARKER : point synbol
FI LL : pol ygon synbol
pSynbol synbol to be processed

aStippl e stipple to be assigned

RETURN: not hi ng

NOTE: Since there is no direct correlation between ArcView
.Stipple request and an ArcObject nethod or property,
we will use this macro to allow the user to change a
| Symbol object into a IMiltilLayerFill Synmbol provided
a valid IMiltiLayerFill Synbol object is given

Di m aSynmlyp As String
Di m pSynmbol As | Synbol
Dim aStipple As | MiltilLayerFill Synbol

I I R T T R N

Pu

ic Sub avSynbol Set Styl e(aSyniTyp, pSynbol As |Synbol, aStyle)
PURPOSE: TO SET THE STYLE FOR A SYMBOL

G VEN: aSynmTyp = type of synbol to be processed
PEN : line synbol
MARKER : point synbol
FILL : pol ygon synbol
pSynbol = synbol to be processed
aStyle = style to be assigned, varies depending upon

the type of symbol
for PEN synbol s

0 : Solid
1 Dashed
2 : Dotted

3 : Has alternating dashes and dots

4 : Has alternating dashes and double dots
5 : Is invisible

6 : WII fit into it's bounding rectangle
for MARKER synbol s
0 Crcle
1 Squar e
2 Cross
3: X
4 : Dianond
for FILL synbols
0: Solid
1 Enmpty

2 Hori zontal hatch

3 Vertical hatch

4 : 45-degree downward, left-to-right hatch
5 : 45-degree upward, left-to-right hatch

F ook k F k% 3k ok ok ok ok ok ok ok ok ok ok Sk Sk Ok Ok Ok x ¥ Ok Ok Ok % K ok R T K ok F F Ok ok x % % x F F K ¥ ok 3k ¥ F % * * *

Ok ok R Rk ok ok ok Sk 3k 3k 3k Ok 3k 3k Ok Ok O % % ok %k k¥ ¥ 3 F

D-82 Avenue Wraps

6 : Horizontal and vertical crosshatch
7 : 45-degree crosshatch

RETURN: not hi ng
Di m aSynmlyp As String

Di m pSynmbol As | Synbol
Dim aStyle As Vari ant

%k Ok Ok F % % F

Pu

ic Sub avTableSort(tbl Nane, aField, anOder, Optional aFileNane)

PURPGCSE: TO SORT A TABLE BASED UPON A FIELD IN AN ASCENDI NG OR
DESCENDI NG ORDER

G VEN: t bl Nane = nane of table to be sorted
aField = nane of field that the sort is based upon
anOr der = the sort order as a Bool ean

True = ascending, False = Descending

aFil eNane = optional argument denoting the name of the
new dBase file that will be created
if the name does not contain a conplete
pathnane the current working directory

will be used, some exanples include:
c:\project\test\atabl e. dbf
at abl e. dbf
RETURN: not hi ng
NOTE: (a) If the table contains selected records then only
the selected records will be sorted, otherwi se,
the entire table will be sorted

(b) A new dBase file is created containing the results
of the sort and is added to the document, the
default name of the new dBase file will be of the

form tbl Nane_sort. dbf

(c) The optional argunment, aFileNanme, can be used to
explicitly define the name of the new dBase file
and override the default nam ng convention

(d) If the new dBase file that is to be created exists
on disk, it will be deleted prior to creating the

new file

(e) If the new dBase table that is to be added to the
current document exists in the docunent, it wll
be renoved prior to adding it back in

Dim tbl Nane, aField As String
Di m anOrder As Bool ean
Dim aFil eNane As String

Public Sub avThenelnvalidate(pnxDoc As | MDocunent, theThene, rdStatus

PURPCSE: REDRAW A THEME

G VEN: pmxDoc = the active view
theTheme = theme to be processed
rdStatus = redraw status (True = redraw entire view)

(Fal se = redraw thene only)
RETURN: not hi ng

NOTE: If False is specified for rdStatus it may be necessary
to follow the call to avThenelnvalidate with a call to
pActiveVi ew. Refresh or avGetDisplayFlush in order to
refresh the display so that the changes made to the
thene are properly displayed, these calls are not nade
here thereby elimnating nultiple screen redraws

* ok R ok ok ok ok ok o K Ok Ok ok o 3k ok X ok XTI Ok 3k ok 3k Ok ok sk ok Ok ok sk Ok ok ok Ok 3k Ok ok K ok o Ok Ok Ok 3k 3k ok ok ok 3k x k k ok F F F* yx KT Ok 3k F F Ok F * X %

I T T T e T T L R

Di m pmxDoc As | MkDocunent
Dim t heThene As Vari ant

Appendix D Listing of Avenue Wraps™ D-83

' * DimrdStatus As Bool ean *

' * *

Public Sub avTheneSet Nane(pmxDoc As | MDocunent, _
t heTheme, newNane, updateTOC)

PURPCSE: TO SET THE NAME OR ALIAS FOR A LAYER

G VEN: pmxDoc = the active view
theTheme = theme to be processed
newNare = new nane or alias to be assigned to thene

updat eTOC = update status (True = update TOC)
(Fal se = do not update TOC)

RETURN: not hi ng

NOTE: The given updateTCC allows the user to control when
the table of contents (TOC) is refreshed, to reflect
the nane change. If many layers are to be nodified

it is better to update at the end of the nodifications
rather than after every single nodification

Di m pmxDoc As | MkDocunent
Dim t heThene As Vari ant

Di m newNane As Vari ant

Di m updat eTOC As Bool ean

I T R R R R N RN

ic Sub avUnion(pMap As |Map, geonList, pNewGeom As |Geonetry)

PURPGCSE: TO UNION SHAPES OF THE SAME GEOMETRY TYPE | NTO ONE

NEW SHAPE
G VEN: pMap = | Map object for current active view
geonList = list of geonetry objects to be unioned
RETURN: pNewGeom = new geonetry object representing the union

of the given geonetry objects
Dim pMap As | Map
Di m geonLi st As New Col |l ection
Di m pNewGeom As | Geonetry

Pu

ic Sub avUnique(pmxDoc As | MDocunent, theThene, aField, showNulls

PURPGCSE: TO SET THE LEGEND THAT |S ASSOCI ATED WTH A THEME
TO BE OF UNI QUE TYPE

G VEN: pmxDoc = the active view
theTheme = theme to be processed
aField = field name that theme is to be classified
upon

showNul I's = flag denoting whether features that have
not been assigned a value for aField
should be drawn or not (true, false)

RETURN: not hi ng

NOTE: (a) Al features in the theme will be classified such
that features having a unique value, within a
field, will be drawn in a unique or different
synbol from the other unique values wthin the

field
(b) After a theme has been classified you nmust use
avCet Legend to get the new legend that reflects
the new classification if you wish to manipulate
the labels or synbols in the classification

Di m pmxDoc As | MkDocunent
Di m t heThene As Vari ant
Dim aField As String

F %k Ok ok % % ok Ok ok ok k x F R K ok ok % Ok ok Ok F Kk 3k 4 R T K ok ok F F ok 4k o ok X X oy RTT K kX 3k 3k F ok % ok % o Ok F F X ok ok * X Ok o F

$ ok sk R R kR b ok ok % 3k ok k kO ok 3k 3k Ok Ok Ok 3k kb b EN— % 3k ok ¥ ¥ % 3k 3k F F * * * F

D-84 Avenue Wraps

" * DimshowNulls As Bool ean *
TE— *
Public Sub avUni queM pmxDoc As | MDocurent, _

theThenme, aFieldl, aField2, aField3, showNulls)

PURPGCSE: TO SET THE LEGEND THAT |S ASSOCI ATED WTH A THEME
TO BE OF UNIQUE TYPE FOR MJLTI PLE ATTRI BUTES (MAX 3)

G VEN: pmxDoc = the active view
theTheme = thenme to be processed
aFi el d1 = first field nane that thenme is to be
cl assified upon
aFi el d2 = second field name that thene is to be

classified upon, specify NULL if no field
is to be used in the classification
aFi el d3 = third field name that theme is to be
classified upon, specify NULL if no field
is to be used in the classification
showNul I's = flag denoting whether features that have
not been assigned a value for the
specified fields should be drawn or not
(true, false)

RETURN: not hi ng

NOTE: (a) Al features in the theme will be classified such
that features having a unique value, within the
fields, will be drawn in a unique or different
synbol from the other unique values wthin the

fields
(b) After a theme has been classified you nmust use
avCet Legend to get the new legend that reflects
the new classification if you wish to manipulate
the labels or synbols in the classification

Di m pmxDoc As | MkDocunent

Dim t heThene As Vari ant

Dim aFi el d1, aField2, aField3 As String
Di m showNul I s As Bool ean

I T T I

F ok ok R O ko X o X x XTI K X E K kX X X X o X x XTI Ok X ok X X K ko F ok ok x x K K K F ok X % X F % X Ok ¥ F X ¥ * * % x *

Public Function avUnJoinAll (aVTab) As |nteger

' *
' PURPOSE: TO REMOVE ALL JO NS FROM A VTAB *
0 *
' G VEN: aVTab = nane of VTab to be processed *
0 *
' RETURN: avUnjoinAll = error flag *
' 0O : no error *
' 1 : error detected *
' 2 : VTab has no joins *
0 *
' Dim aVTab As String *
' Di m avUnJoi nAll As I nteger *
0 *
Public Function avUnLinkAll (aVTab) As |nteger

' *
' PURPOSE: TO REMOVE ALL LINKS (RELATES) FROM A VTAB *
0 *
' G VEN: aVTab = nane of VTab to be processed *
0 *
' RETURN: avUnLi nkAl'l = error flag *
' 0 : no error *
' 1 : error detected *
0 *
' Dim aVTab As String *
' Di m avUnLi nkAl | As I nteger *
0 *

Appendix D Listing of Avenue Wraps™ D-85

Public Sub avUpdateAnno(pFeature As |Feature, _
ol dX, ol dY, newX, newy,
rotang, scal eX, scaleY,
newFeature As |Feature)

PURPGSE: TO TRANSFORM AN EXI STI NG ANNOTATI ON FEATURE

G VEN: pFeature = annotation feature to be processed
ol dX = x coordinate of feature control point
ol dY = y coordinate of feature control point
newx = x coordinate control point to be noved to
newy = y coordinate control point to be noved to
rotang = rotation angle to be applied (degrees)
0.0 : do not rotate feature
<>0 : add rotation angle to feature
scal eX = X scale factor (can not be <= 0.0)
scal eY = Y scale factor (can not be <= 0.0)
newFeature = feature after transformation applied

-2

(a) The rotation angle is added to the existing angle
of the annotation (positive value denotes counter-
cl ockwi se rotation, negative value clockw se)

(b) Scale factor greater than 1.0 increases the size,
while a value less than 1.0 decreases the size

(c) The X scale factor is always used in the scaling
process, the Scale method does not seem to work as
it should on Annotation features when the X and Y

scale factors are different

(d) The layer that the feature resides nmust be in an

editable state

Di m pFeature As | Feature
Dim ol dX, oldY, newX, newY, rotang, scaleX scaleY As Double
Di m newFeature As | Feature

I T T R T I NN

ic Sub avUpdateDefaul t Font ()

PURPCSE: UPDATE THE DEFAULT FONT PARAMETERS I N THE DRAW TOOLBAR
BY EXECUTI NG THE SELECT ELEMENTS TOOL

G VEN: not hi ng

RETURN: not hi ng

* %k 3k F ¥ * F

Public Function avUpdateJdoin(aVTabl, aVTab2) As Integer

PURPCSE: TO UPDATE THE SELECTION SET IN aVTab2 TO REFLECT THE
SELECTI ON SET OF aVTabl BASED UPON A JO N (RELATE)

G VEN: aVTabl
aVTab2

= nane of VTab which aVTab2 is joined to
= nane of VTab joined to aVTabl

RETURN: avUpdateJoin = error flag

0O : no error

1 error detected

2 aVTabl does not exi st

3 : aVTab2 does not exi st

4 join was not found

NOTE: This procedure will refresh the selection set for the
VTab being processed, aVTabl in addition to the
sel ection set of aVTab2

Di m aVTabl, aVTab2 As String

@)

m avUpdat eJoin As | nteger

)
)
F ok ok R R ok g K K Ok ok Ok ok F % % K % oy RTT F K Ok Ok R ok 4 RTT K K 4 ok Ok Ok ok K ok % % ok ok ok ok x F g K ok ok Ok Ok %k * Ok * % F % F

%k ko ok ok 3k 3k 3k ¥ F % % Ok Ok Ok F

D-86 Avenue Wraps

Public Sub avUpdatelLegend(pmDoc As | MDocunent, theThene)
*

PURPGSE: TO UPDATE A THEME TO REFLECT ANY CHANGES MADE TO I TS
LEGEND, BOTH THE THEME AND THE TABLE OF CONTENTS WLL
BE UPDATED (REDRAWWN)

G VEN: pmxDoc = the active view
theTheme = theme to be processed

RETURN: not hi ng

NOTE: It may be necessary to follow the call to the routine
avUpdat eLegend with a call to avDisplaylnvalidate or
avCet Di spl ayFlush in order to refresh the display so
that the changes made to the theme are properly
di spl ayed, these calls are not made here thereby
elimnating nultiple screen redraws

Di m pmxDoc As | MkDocunent
Dim t heThene As Vari ant

T R L T NN

e
c

ic Function avUpdatelLink(aVTabl, aVTab2, alLink) As Integer

PURPCSE: TO UPDATE THE SELECTION SET IN aVTab2 TO REFLECT THE
SELECTI ON SET OF aVTabl BASED UPON A SPECI FIED LINK
(RELATE)

G VEN: aVTabl = name of VTab which aVTab2 is linked to
aVTab2 = nane of VTab linked to aVTabl
alLi nkl = link nunber in aVTabl to be updated
(if aVlab2 is a layer and if aLinkl is
negative the selection set of aVTab2 is
updated but the display of the selected
features is not)

RETURN: avUpdateLink = error flag
0 : no error
1 : error detected
2 : aVTabl does not exist
3 : aVTab2 does not exist
4 link nunber was not found

Di m aVTabl, aVTab2 As String
Di m aLi nkl As Long
Di m avUpdat eLi nk As | nteger

E I T T T N NN

e
c

¥ ok Rk x oy K ok ok ¥ Sk ok ¥ ok Ok ok oy R T F Kk ok k F ok ok %k Sk ok F ok ok K Kk ok K x F F x x FTT F ok ok F ok ok * ¥ %k x ¥ Ok F * * F ¥ x y

ic Function avUpdateLinks(aVTabl) As Integer

PURPGCSE: TO UPDATE THE SELECTION SETS IN ALL VTabs THAT ARE
LI NKED (RELATED) TO aVTabl

G VEN: aVTabl = nane of VTab to be processed

RETURN: avUpdat eLinks = error flag
0 : no error
1 error detected
2 : aVTabl does not exist
3 no |links were found

NOTE: This procedure will refresh the selection set for the
VTab being processed, aVTabl in addition to all of the
sel ection sets that aVTabl has links (relates) with

Di m aVTabl As String
Di m avUpdat eLi nks As | nteger

R T N T R RN

Appendix D Listing of Avenue Wraps™ D-87

Public Sub avUpdateSel ection(pmkDoc As | MDocurment, theThene)
T *
o PURPCSE: TO UPDATE THE ATTRIBUTE TABLE FOR A THEME TO REFLECT *
b THE CURRENT SELECTION SET FOR THE THEME *
' * *
' * G VEN pmxDoc = the active view *
b theTheme = theme to be processed *
' * *
' * RETURN: not hi ng *
' * *
' * Dim pnxDoc As | MkDocunent *
" * DimtheTheme As Variant *
TE— *
Public Sub avVi ewAddG aphi c(pEl enent As |Elenment)
' * *
' * PURPCSE: TO ADD A GRAPHI C INTO THE ACTIVE GRAPHI CS LAYER *
TE— *
" * G VEN pEl ement = graphic to be added *
TR— *
' * RETURN: not hi ng *
TR— *
b NOTE: Use the subroutine avSetGraphicsLayer to set the *
o active graphics layer (annotation target |ayer) *
' * *
' * Dim pEl enent As |El enent *
TR— *
Public Sub avVi ewGet Graphi cs(gralList)
' * *
" * PURPCSE: TO GET A LIST OF ALL OF THE GRAPHICS IN THE MAP *
L *
' * GdVEN not hi ng *
TR— *
b RETURN: graList = list of all graphic elements in the nap *
TR— *
' * DimgraList As New Collection *
TR— *
Public Function avViewMake() As |Mp
T *
' * PURPOSE: TO CREATE A NEW VI EW (DATA FRANE) *
TR— *
' * GdVEN not hi ng *
' * *
' * RETURN: avVi ewivake = the new view (data frane) object *
TR— *
' * NOTE: If the view can not be created, avViewMake will be *
v set to NOTHI NG *
' * *
" * Dim avVi ewiake As | Map *
TR— *
Public Function avVTabExport(aTable, aFileName, aC ass, selRecrds)

As | Tabl e
TR— *
b PURPOSE: EXPORT AN EXI STING TABLE TO CREATE A NEW TABLE THAT IS *
b OF dBASE OR TEXT FILE TYPE *
TR— *
' * G VEN aTabl e = nanme of the table to be exported *
b aFi | eNane = name of the table to be created, *
o if the name does not contain a *
' conpl ete pathnane the current working *
' directory will be used, some exanples *
tox of nane include: *
b c:\project\test\atable *
b c:\project\test\atabl e. dbf *
tox atabl e *
b at abl e. dbf *
o the name can or can not contain the *
tox extension .dbf or .txt *
' ad ass = type of table to be created *
tox dBase *

D-88 Avenue Wraps

(c) if the table can not be exported for any reason
what so ever, avVTabExport will be set to NOTH NG

Di m aTabl e, aFileNanme, aC ass As String
Di m sel Recrds As Bool ean
Di m avVTabExport As | Table

v TEXT *
o sel Recrds = indicates if the selected records are *
' to be exported *
' true = export selected records only *
b false = export all records *
' * *
' * RETURN: avVTabExport = table object that is created *
' * *
b NOTE: (a) if the table to be created, aFileNanme, exists on *
o disk, it will be deleted before the exporting is *
o perforned without informng the user/devel oper *
o (b) if selected records are to be exported and there *
tox are no selected records, the entire table will be *
' exported *
' * *
' * *
' * *
' * *
' * *
' * *
' *

*

Public Function avVTabMake(aFileNane, forWite, skipFirst,
Optional aCl ass) As |Table

e
c

ic Function avVTabMakeNew(aFileNanme, aclass) As |Table

* %

PURPGSE: CREATE A NEW TABLE THAT IS OF dBASE OR TEXT FILE TYPE

' * *
o PURPCSE: OPEN AN EXI STING TABLE THAT IS OF dBASE OR TEXT FILE *
v TYPE *
' * *
' * G VEN aFi | eName = nanme of the table to be opened, *
o if the name does not contain a *
' conpl ete pathname the current working *
' directory will be used, sone exanples *
tox of nane include: *
b c:\project\test\atabl e. dbf *
b at abl e. dbf *
o the extension .dbf or .txt indicates *
b the type of table to be opened *
b forWite = indicates if the table is to be made *
b editable once it is opened *
tox ski pFi rst = indicates if the first record in the *
v table is to be ignored *
tox ad ass = optional argunent which specifies the *
b type of table to be opened *
' dBase *
v TEXT *
b if this argunent is specified it wll *
' override any extension that may appear *
b in aFil eName *
' * *
' * RETURN: avVTabMake = table object that is created *
' * *
o NOTE: (a) The forWite and skipFirst argunents are ignored, *
tox as of this version, and as such have no inpact *
v upon this procedure *
o (b) If aFileNane does not contain an extension the *
tox procedure assunes a dBase file is to be opened *
b (c) If aFileNane can not be opened, avVTabMake will be *
v set to NOTHI NG *
o (d) Use the function avAddDoc to add the table into *
tox the Table of Contents *
' * *
" * DimaFileNanme As String *
" * DimforWite, skipFirst As Bool ean *
" * DimaCass As String *
' * Dim avVTabMake As | Table *
' * *

b

*

*

*

Appendix D Listing of Avenue Wraps™ D-89

G VEN: aFi | eNane = nane of the table to be created,
if the nane does not contain a
conpl ete pathname the current working
directory will be used, sone exanples
of name include:
c:\project\test\atable
c:\project\test\atabl e. dbf

at abl e
at abl e. dbf
the name can or can not contain the
extension .dbf or .txt
ad ass = type of table to be created
dBase
TEXT
RETURN: avVTabMakeNew = table object that is created
NOTE: (a) Two fields called OD and ID will be created by

this routine, the function avAddDoc can be used to
add the table to the map, if need be
(b) If the table to be created exists on disk, the
routine will abort the existing table will not be
overwritten

Dim aFi |l eNane, aC ass As String
Di m avVTabMakeNew As | Tabl e

* ok Ok kb ok k¥ ok ko F Ok 3k 3k ok 3k Ok k F Ok Ok ok * F F

Ok R Rk 3k ok ok 3k kO O O 3k 3k Ok k% % % ok ok ¥ F

*

Public Sub avXORSel ection(pmkDoc As | MDocurment, theThene,
orgSel Set As | Sel ectionSet,
xor Sel Set As | Sel ectionSet)

PURPCSE: PERFORM AN EXCLUSIVE XOR ON A LAYER OR TABLE SELECTI ON

SET
G VEN: pmxDoc = the active view

theTheme = the thene or table to be processed

orgSel Set = the selection set to be XOR
RETURN: xorSel Set = the selection set after XOR was perfornmed
NOTE: The current selection set for the thenme or table is

used in the XORing with the set that is passed in
(orgSel Set). If theThene has no selection set, the
command will select all features (rows) in theThene
and use this set in the XOR process

Di m pmxDoc As | MkDocunent

Dim t heThene As Vari ant

Di m orgSel Set As | Sel ecti onSet
Di m xor Sel Set As | Sel ecti onSet

SOk ok k% % ok ok Sk kO k k F F ¥ % % ok Ok F

Pu

ic Sub avZoonrToSel ected(pnxDoc As | MDocunent, theThene)

PURPGSE: TO ZOOM TO THE EXTENT OF THE SELECTED SET FOR A THEME
OR THE EXTENT OF ALL SELECTED FEATURES IN THE MAP

G VEN: pmxDoc = the active view
theTheme = theme for which its selected features wll
be zooned to, if NULL is specified all
selected features will be zooned to
RETURN: not hi ng
NOTE: If a thene is specified and the thenme does not contain
any selected features, the command will zoom to the

full extent of the theme (all features processed in
this condition)

F Ok 3k ok ok oy Kk Ok ok X x 3k Ok ok oy KT Ok ok ok kX Kk ok ok ok % kg K ok ok F E k4 K

$ ok kR R % % ok Sk k¥ ¥k 3k %k ¥

Di m pmxDoc As | MkDocunent

D-90 Avenue Wraps

" * DimtheTheme As Variant *
TE— *
Public Sub avzZooniToTheme(pnxDoc As | MDocunment, theThene)

T *
' * PURPCSE: TO ZOOM TO THE EXTENT OF A THEME *
' * *
' * G VEN pmxDoc = the active view *
b theTheme = theme to be processed *
TE— *
' * RETURN: not hi ng *
' * *
' * Dim pnxDoc As | MkDocunent *
" * DimtheTheme As Variant *
TE— *
Public Sub avzZooniToThenmes(pnxDoc As | MDocurment, thnlist)

' * *
' * PURPCSE: TO ZOOM TO THE EXTENT OF A GROUP OF THEMES *
TR— *
' * G VEN pmxDoc = the active view *
' thnlist = list of thenes to be processed *
TR— *
' * RETURN: not hi ng *
' * *
' * Dim pnxDoc As | MkDocunent *
" * Dimthnlist As New Collection *
TR— *

Public Sub ChangeView pnxDoc As | MDocunent, opnode, _
scl Fctr, panXval, panYval, usrView As | Unknown,
i ok, newRect As |Envel ope)

PURPGSE: SCRIPT TO ALTER THE DI SPLAY COF THE VI EW

G VEN: pmxDoc = the active view
opnode = npde of operation
1 : zoom scale factor to be applied
2 : panning values to be applied
3 : a new extent to be defined
4 : center display about a point

scl Fctr = scale factor to be applied to view

panXval = distance in world units to pan along x axis
or display center x coordinate if opnode = 4

panYval = distance in world units to pan along y axis

or display center y coordinate if opnode = 4
usrView = user-defined view extent rectangle, can be
either an |Polygon or |Envel ope object

RETURN: i ok
newRect

= error flag (0 = no error, 1 = error)
= view extent rectangle

Di m pmxDoc As | MkDocunent

Di m opnode As |nteger

Di m scl Fctr, panXval, panYval As Double

Di m usrView As | Unknown

Dimiok As I|nteger

Di m newRect As | Envel ope

Ok ok R kR ok ok ok %k ok kO 3k 3k Ok Ok F % % ok k¥ F

Dim origList As New Collection
Di m newLi st As New Col | ection

* ook ok ¥ ok k% F ok oy KT ¥ ok kK ok k kO k% Ok ok ok ok ok F ok F X ok X Kk ok ok * ¥ F

Public Sub CopylList(origList, newist)

0 *
' PURPCSE: TO COPY A COLLECTION INTO ANOTHER COLLECTION AND THEN *
' I NI TIALI ZE OR CLEAR THE ORI G NAL COLLECTI ON *
' *
' G VEN: origList = list to be copied and then cleared *
0 *
' RETURN: newLi st = copy of the original Iist *
' *
0 *
0 *
' *

Appendix D Listing of Avenue Wraps™ D-91

Public Sub CopyList2(origList, newist)

as doubles, longs, integers, etc.

Dim origList As New Collection
Di m newLi st As New Col | ection

T *
' PURPCSE: TO COPY A COLLECTION INTO ANOTHER COLLECTION AND THEN *
' I NI TIALI ZE OR CLEAR THE ORI G NAL COLLECTI ON *
' *
' G VEN: origList = list to be copied and then cleared *
0 *
' RETURN: newLi st = copy of the original Iist *
' *
' NOTE: These are collections of objects, not variables such *
0 *
0 *
0 *
' *
' *

PURPCSE: TO COPY A COLLECTION INTO ANOTHER COLLECTI ON LEAVI NG
THE ORI G NAL COLLECTI ON | NTACT (UNALTERED)

G VEN: origList = list to be copied
RETURN: newLi st = copy of the original Iist

Dim origList As New Collection
Di m newLi st As New Col | ection

ic Sub CopyList3(origList, new.ist)
i

ic Function CreateAccessDB(sDir, sDBNane, bOverWite) As |Wrkspac

PURPGCSE: CREATE A PERSONAL GEODATABASE

G VEN: sDir = directory location
sDBNane = geodat abase nane (do not include the
.mdb extension in the nane)
bOverWite = flag denoting whether to overwite

the geodatabase if it exists
true = overwite, false = do not

RETURN: Creat eAccessDB = geodatabase that is created, wll
be set to NOTHING if an error was
encountered during the processing

NOTE: (a) The geodatabase created will contain no dataset or
feature class. These will have to be added I|ater
on if need be (only the .ndb file is created)

(b) The Editor should not be active, if a personal
geodat abase is being editted and this function is
called during the editting, an automation error
will be generated. This is why avStopEditing is
called, to make sure the Editor is not in an edit

state

Dim sDir As String

Di m sDBNanme As String

Dim bOverWite As Bool ean

Di m Creat eAccessDB As | Wrkspace

*
*
*
*
*
*
*
*
*
*
*
*
*
b
*
*
*
*
*
*
*
*
*
*
*
Publ
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Sk ok R Rk R ok ok o kS k k kR Ok 3k 3k ok Ok Ok % % ok 3k ¥ X X (D F F F F * % ok F F ¥ F

*

Public Function CreateAnnoC ass(pWrkspace As |Wrkspace,
theName, pFields As |IFields, _
dRef Scal e, dUnits) As | FeatureC ass

G VEN: pWor kspace = connection to the geodatabase

t heNane = annotation feature class name if the
feature class is to appear in a
dataset of the same name, otherw se,
the annotation feature class nane
and the name of the dataset in which
the feature class is to appear in

pFi el ds = shapefile attributes

L N
* %k 3k F F % F

D-92 Avenue Wraps

dRef Scal e = reference scale of the current view
dUnits = units setting of the current view

RETURN: CreateAnnoClass = feature class that is created, wll
be set to NOTHING if an error was
encountered during the processing

NOTE: (a) Do not use the hyphen or dash (-) character in
the name for the annotation feature class

(b) The first character in the feature class nane
should not be nuneric (not a nunber, but rather

an al phacharacter)

(c) Wen theNane contains both the feature class and
dataset nanes at |east one space nust separate the
two itens (the feature class precedes the dataset)

(d) If the dataset in which the feature class is to
appear in does not exist, it will be created, if
the dataset does exist, it will be used as is

Di m pWwrkspace As | Wrkspace

Dim theName As String

Dim pFields As |Fields

Di m dRef Scal e As Doubl e

Dim dUnits As esrilUnits

Di m Creat eAnnoCl ass As | Featured ass

F % Ok ok ok % X ok % ok ok ok ok K ok ok ok x X ok Xy ok ok X

$ ok ok Ok R % 3k b b ok % % 3k ok ok %k %k ¥ ¥ ¥ 3 F F

*
Public Function CreateFeatC ass(pFeatureDataset _
As | Feat ureDat aset, theNane,
geonType As esri GeometryType,
Optional pFields As |Fields)
As | FeatureCd ass

PURPCSE: CREATE A FEATURE CLASS WTHI N A FEATURE DATASET IN A

GECDATABASE
G VEN: pFeat ureDat aset = feature dataset to be processed
t heNare = featurecl ass nane
geonType = featureclass geonetry type, such as:
esri Geonet r yPoi nt
esri Geonet ryPol yl i ne
esri Geonet ryPol ygon
pFi el ds = feature attributes (optional)
RETURN: CreateFeatClass = feature class that is created, wll
be set to NOTHING if an error was
encountered during the processing
NOTE: (a) The function CreateNewShapefile can be used to
create the |FeatureDataset object, if appropriate
(b) If pFields contains any geonetry fields they wll
be ignored, only valid attribute fields will be
processed

(c) If pFields contains the Shape field, the settings
for the HasM and HasZ properties will be used in
creating the feature class
(d) If pFields is not specified only the O D and SHAPE
fields will be added to the featureclass
(e) Do not use the hyphen or dash (-) character in
the name for the annotation feature class
(f) The first character in the feature class nane
should not be nuneric (not a nunber, but rather
an al phacharacter)

Di m pFeat ureDat aset As | Feat ureDat aset
Dim theName As String

Di m geoniType As esri GeonetryType

Dim pFields As |Fields

Di m CreateFeat Cl ass As | Featured ass

L o R R R R R R T i VA T N R P R PR
¥ % % ok ok ok ok F F ok ok k% % ok ok K Kk F F F ok ok X X X ok ok F F F F * ok ok * X

Appendix D Listing of Avenue Wraps™ D-93

PuE)I ic Sub CreatelList(newlist)

PURPGCSE: TO CREATE A NEW COLLECTION MAKING SURE IT IS EMPTY
G VEN: not hi ng

RETURN: newLi st = new |ist

*
*
*
*
*
*
*

Di m newLi st As New Col | ection

% k% % % ok ok F

*

Public Function CreateNewCGeoDB(pFieldsl As |IFields, _
geonType As esri GeometryType,
def Nanel As String, _
aTitle As String) As |Featured ass

PURPGSE: USING A FILE DIALOG BOX PROWPT THE USER TO SPECI FY A
WORKSPACE, WHICH WLL BE A PERSONAL GEODATABASE.
ALTERNATI VELY, THE PERSONAL GEODATABASE CAN BE CREATED
W THOUT ANY USER | NTERACTI ON

G VEN: pFi el dsl = attributes to be stored in the
new personal geodatabase
geoniype = shapefile geonetry type

(as of this inplenmentation not used,
so that, specify as NOTH NG

default filename (see notes bel ow)
file dialog nmessage box title, if
aTitle is equal to CREATEandLOAD

no file dialog box will be shown,
the shapefile or PGD will be

created without user intervention

def Nanel
aTitle

RETURN: CreateNewGeoDB = feature class that is created, wll
be set to NOTHING if an error was
encountered during the processing

NOTE: File Dialog is Displayed (aTitle <> "CREATEandLOAD')

(a) A stand-alone annotation feature class within a
feature dataset is created by this function, the
nanes of the feature dataset and the annotation
feature class are the sane (see note b)

(b) Optionally, the user can enter up to 3 nanmes in
the file nane data entry field, separated by at
| east one space (blank character) when a personal
geodat abase is to be created. Wien 1 nane is given
see note c. Wen 2 nanes are specified, the first
nane defines the name of the dataset and feature
class while the second defines the name of the PGD
to be created. When 3 nanes are specified, the
first defines the nane of the feature class, the
second defines the name of the dataset and the
third defines the name of the PCD to be created

(c) Use CreateNewshapefile specifying the .nmdb file
nane extension in the default filename to create
a geodatabase that contains a feature class and
not an annotation feature class

(d) The new annotation feature class is automatically
added to the map once it has been created

(e) If an existing .ndb file is selected, the user can
ei ther abort the conmand (CANCEL), add to the .ndb
file (NO or overwite the existing file (YES)

(f) When an existing .ndb file is appended the root
nane of the default filename is used as the nane
of the new annotation class that is created

(g) Wen an existing .ndb file is to be overwitten,
if the file exists in the map the function will
not delete the file but will inform the user and

abort the function

(h) The Map Units for the data frane nust be set to

* Ok ok ok kK ok ok ok o Ok ok ¥ ok ok o k k ok F ok ok K K ok K K Ok ok ko x K % ok 4 K % ok k% ok ok F ok Ok F ok Ok Ok x ok % K
¥k Kk ok ok Kk ok K K ok ok K ok ok K K ok ok K ok ok K K ok K K ok ok K K ok K K ok ok K K ok K K ok ok K ok ok K K ok ok K ok ok

D-94 Avenue Wraps

sonet hi ng other than Unknown Units, otherw se the

MapScal e property will result in an autonation
error nessage being generated
File Dialog not Displayed (aTitle = "CREATEandLQOAD")
(i) Wen aTitle = "CREATEandLOAD' this denotes that

the default filename (defNanel) is to be created
and | oaded without displaying the file dialog box
In this node of operation, defNamel can contain
up to three itens separated by a space:
>>>Single |tem condition<<<

Under this condition, the programrer specifies
the nane of the personal geodatabase to be created
and | oaded. A full pathname for the personal
geodat abase nust be given. |If the personal

geodat abase exists, it will not be deleted but
rather, it will be used as is. The progranmer has
to make sure that the personal geodatabase does
not already exist in the map, otherwise, multiple

copies of the personal geodatabase will appear in
the TOC because the existing personal geodatabase
will be loaded into the map
Exanpl e of defNanel to create a geodatabase that
will be named L_O.ndb and will contain a feature
dataset and an annotation feature class named L_O
def Nanel = "c:\tenp\L_O. ndb"

>>>Two | tem condition<<<
Under this condition, the programrer specifies
the nane of a feature dataset to be created and a
personal geodatabase in which the feature dataset
is to be stored in. The personal geodatabase can
either exist or not, if it does not it wll be
created. |If the personal geodatabase exists, the
feature dataset will be added to the personal
geodat abase. |f the feature dataset exists in the
personal geodatabase, it will not be deleted but
rather, it will be used as is. The progranmer has
to make sure the feature dataset does not already
exist in the map, otherwise, nultiple copies of
the feature dataset will appear in the TOC because
the existing feature dataset will be |oaded into
the nap
Exanpl e of defNanel to create a geodatabase that
will be named L_O.ndb and will contain a feature
dataset and annotation feature class named G Gid
def Nanel = "G Gid c:\tenp\L_O.ndb"
>>>Three |tem condition<<<
Simlar to the two item condition described above
with the exception that the user can control the
nane of the dataset that is created.
Exanpl e of defNanel to create a geodatabase that
will be named L_O.ndb and will contain a feature
dataset called Profile and an annotation feature
class naned G Gid
defNanel = "G Gid Profile c:\tenp\L_0.mdb"

Dim pFieldsl As |Fields

Di m geoniType As esri GeonetryType

Di m def Nanel As String

Dim aTitle As String

Di m Creat eNewGeoDB As | Featured ass

I R R R R T T R R R I TR R R I R R R R R I I O T L

I T I I R O N I N N

*

Public Function CreateNewShapefile(pFieldsl As |Fields, _
geonType As esri GeonetryType, defNanel As String,
aTitle As String) As |Featured ass

PURPGSE: USING A FILE DIALOG BOX PROWT THE USER TO SPECI FY A
WORKSPACE TO BE CREATED, THIS CAN BE A SHAPEFILE OR A
PERSONAL GEODATABASE. ALTERNATI VELY, THE SHAPEFILE OR
PERSONAL GEODATABASE CAN BE ESTABLI SHED W THOUT ANY

* ok ¥ ¥ *
* ok Kk F

Appendix D Listing of Avenue Wraps™ D-95

USER | NTERACTI ON

G VEN: pFi el dsl = attributes to be stored in the
new shapefile
geonfType = shapefile geonetry type, such as:

esri Geonet r yPoi nt
esri Geonet ryPol yl i ne
esri Geonet r yPol ygon
(use Creat eNewGeoDB when deal i ng
wi th annotation features)
def Nanel = default filename, this may or may
not contain a filename extension
(see note a bel ow)
aTitle = file dialog nmessage box title, if
aTitle is equal to CREATEandLOAD
no file dialog box will be shown,
the shapefile or PGD will be
created without user intervention

RETURN: Creat eNewShapefile = feature class that is created,
will be set to NOTHING if an
error was encountered during the

processi ng

NOTE: File Dialog is Displayed (aTitle <> "CREATEandLOAD')

(a) If the defName argunment contains the .shp filenane
extension, the dataset type that will be created
will be a shapefile. If the .ndb filename extension
is found, the type of dataset created will be a
personal geodatabase. If no filename extension is
given both types will appear in the list of
avail abl e types and the user can pick the desired

type.

(b) The new shapefile or geodatabase is automatically
added to the map once it has been created

(c) Wen a personal geodatabase is created a feature
dataset and a feature class are created using the
sane nanme, the feature class is added to the
feature dataset (see note d)

(d) Optionally, the user can enter up to 3 nanmes in
the file nane data entry field, separated by at
| east one space (blank character) when a personal
geodat abase is to be created. Wien 1 nane is given
see note c. Wen 2 nanes are specified, the first
nane defines the name of the dataset and feature
class while the second defines the name of the PGD
to be created. Wien 3 nanes are specified, the
first defines the nane of the feature class, the
second defines the name of the dataset and the
third defines the name of the PCD to be created

(e) If an existing .ndb file is selected, the user can
ei ther abort the conmmand (CANCEL), add to the .ndb
file (NO or overwite the existing file (YES)

(f) When an existing .ndb file is appended the root
nane of the default filename is used as the nane
of the new feature class that is created

(g) Wien an existing .ndb file is to be overwitten,
if the file exists in the map the function will

not delete the file but will inform the user and
abort the function
File Dialog not Displayed (aTitle = "CREATEandLOAD")
(h) Wen aTitle = "CREATEandLOAD' this denotes that

the default filename (defNanel) is to be created
and | oaded without displaying the file dialog box
In this nmode of operation, defNamel can contain
up to three itens separated by a space:
>>>Single |tem condition<<<

Under this condition, the programrer specifies
the nane of the shapefile or personal geodatabase

S % % ok ok ok ok ok ok ok ok % K 3k ok ok ok ok ok 3k ok b b % % % ok ok % K ok sk s ok ok ¥ % ok ok ok ok ok sk ox F R ok kg Ok ok ok k k ob ok ok Ok k¥ ok Ok ok ¥ 3 F 3k
¥ ook kK ok ok Kk ok K K ok ok K ok ok K K ok ok K ok ok K K ok K K ok ok K K ok K K ok ok K K ok K F ok ok K ok ok K K ok ok K ok ok K K ok K K ok ok F K ok * * ok ok

D-96 Avenue Wraps

to be created and | oaded. A full pathname for the
shapefile or personal geodatabase nust be given
If the shapefile or personal geodatabase exists,
it will not be deleted but rather, it wll be used
as is. The programmer has to mmke sure that the
shapefile or personal geodatabase does not already
exist in the map, otherwi se, nultiple copies of

the shapefile or personal geodatabase will appear
in the TOC because the existing shapefile or
personal geodatabase will be |oaded into the map
Exanpl e of defNanel to create a shapefile that
will be named L_O.shp
def Nanel = "c:\tenp\L_O. shp"
Exanpl e of defNanel to create a geodatabase that
will be named L_O.ndb and will contain a feature
dataset and feature class named L_O
def Nanel = "c:\tenp\L_O. ndb"

>>>Two | tem condition<<<
Under this condition, the programrer specifies
the nane of a feature dataset to be created and a
personal geodatabase in which the feature dataset
is to be stored in. The personal geodatabase can
either exist or not, if it does not it wll be
created. |If the personal geodatabase exists, the
feature dataset will be added to the personal
geodat abase. |f the feature dataset exists in the
personal geodatabase, it will not be deleted but
rather, it will be used as is. The progranmer has
to make sure the feature dataset does not already
exist in the map, otherwi se, nultiple copies of
the feature dataset will appear in the TOC because
the existing feature dataset will be |oaded into
the nap
Exanpl e of defNanel to create a geodatabase that
will be named L_O.ndb and will contain a feature
dat aset and feature class naned G Gid
def Nanel = "G Gid c:\tenp\L_O.ndb"
>>>Three |tem condition<<<
Simlar to the two item condition described above
with the exception that the user can control the
nane of the dataset that is created.
Exanpl e of defNanel to create a geodatabase that

will be named L_O.ndb and will contain a feature
dataset called Profile and a feature class naned
GGid
def Nanel = "G Gid Profile c:\tenp\L_0.mdb"

Dim pFieldsl As |Fields

Di m geoniType As esri GeonetryType

Di m def Nanel As String

Dim aTitle As String

Di m Creat eNewShapefile As | FeatureC ass

L I R I R R N T R

I T T T T ke T R N S T T T N 2

*

Public Function CreateShapeFil e(featWrkspace _
As | Feat ur eWor kspace,
strName As String, _
geonType As esri GeonetryType,
Optional pFields As IFields, _
Optional pCLSID As U D) As |Featured ass

geoniype = shapefile geonetry type
esri Geonet r yPoi nt
esri Geonet ryPol yl i ne

esri Geonet ryPol ygon

TR— *
b PURPCSE: CREATE A NEW SHAPEFI LE USI NG | NFORMATI ON EXPLI CI TLY *
b DEFI NED IN THE CALLI NG ARGUMENTS (NO USER | NTERACTIQON) *
TR— *
' * G VEN f eat Wr kspace = directory location *
b st r Name shapefile name *
' * *
' * *
T *
' * *

Appendix D Listing of Avenue Wraps™ D-97

' pFi el ds = shapefile attributes (optional) *
' pCLSI D = geonetry type subclass (optional) *
' *
' RETURN: CreateShapeFile = feature class that is created *
' *
' NOTE: (a) The name of the shapefile should not contain the *
' .shp extension, if it does it will be stripped off *
' (b) If the pFields argument is not specified a default *
' shape field with a default spatial reference will *
' be assigned and one attribute called ID will be *
' added to the shapefile *
' *
' Di m f eat Wrkspace As | FeatureWrkspace *
' Dim strName As String *
' Di m geoniType As esri GeonetryType *
' Dim pFields As |Fields *
' Dim pCLSID As U D *
' Di m Creat eShapeFil e As |Featured ass *
' *

e
c

lic Function Dformat(theNunber, TotalDigits, DigitsRight)

PURPGCSE: This is a subroutine type script used to format a data
field of an output file according to a Fortran Fa.b

Di m t heNunber As Doubl e
Dim Total Digits, DigitsRight As |nteger
Dim Dformat As String

0 *
0 *
' *
' format. *
' The input argunment list contains three elenents which *
' are expected to be read as nunbers *
' *
' G VEN t heNunber = the real nunber to be formatted *
' TotalDigits = the number of the data field characters *
' including |eading spaces, decinmal point *
' and decinmal digits *
' DigitsRight = digits to right of deciml point *
' *
' RETURN: Df or mat = string representing the nunber in the *
' speci fied fornat *
0 *
' NOTE: If the nunber will not fit within the specified data *
' field length as specified by TotalDigits, then the *
' data field will be expanded to acconodate the nunber. *
' *
' *
0 *
0 *
' *

Pu

ic Sub ExportVBAcode()

PURPCSE: EXPORT VBA COVPONENTS FROM THE CURRENT PRQJECT INTO A
SPECI FI ED DI RECTORY

G VEN not hi ng
RETURN not hi ng
NOTE: (a) The directory is a hardcoded path stored in aD R

if the directory does not exist, it is created
(b) The Avenue Waps: avFileExists and
avFi | eDel ete
must appear in the project file in order for this
mecro to execute
(c) If the conponent being exported exists on disk, it

will be deleted and the conponent in the project
file will replace whatever was on disk previously
(d) Afile called index.txt will be created which wll
contain a list of the conponents that were witten
to disk

I T T T R

e
c

* KD % ok % ok % ok ok Ok ok kK ok x F K R F ok Kk 4 KT K F ok R K o % o K ok x k % k ok o % F K x K ok x RTT k * kK ok K ok K ok % ok % ok % F x F * ok

lic Function FindLayer(map As |Map, nane As Variant) As ilayer

* %

PURPCSE: FIND A LAYER IN A MAP

D-98 Avenue Wraps

' * *
' * G VEN map = map to be searched *
b name = nane of layer to be found *
TE— *
' * RETURN: Fi ndLayer = the layer in the nmap *
' * *
" * Dimnmap As | Map *
' * Dimname As Variant *
' * Dim FindLayer As |Layer *
TE— *
Public Function FindThenme(map As |Map, nanelN As Variant) As Variant

TE— *
' * PURPOSE: FIND A THEME IN A MAP *
TE— *
' * G VEN map = map to be searched *
' nanel N = nane of theme to be found *
TE— *
' * RETURN: Fi ndThene = the thenme in the nmap *
TR— *
" * Dimnmap As | Map *
" * DimnanmelN As Vari ant *
" * Dim FindTheme As Vari ant *
TR— *

Public Sub Get Shape(el mt Thene, elmtRecrd, _
shapeType, shapelList, shapeDi st)

PURPGSE: TO CREATE A LIST CONTAINING THE COORDI NATES OF THE
PO NTS THAT COWRI SE A FEATURE

el mt Thene = theme of the feature
el mtRecrd = record nunber of the feature

shapelLi st shape's list of points and/or parts

shapeType = shape type enunerator
shapeDi st = ArcView length of the shape in map units

HEZ

This procedure will process a geonetry from gl obal
menory (ugShapeT or avw aps. ShapeT) when the input
argunents, elmtThene and el mtRecrd are set to be
" ", and -1 respectively. Use this approach when the
geonetry for the feature already exists, in so doing
the developer elimnates a reading of the database

m el mt Theme As Vari ant
m el mt Recrd As Long

m shapeType As esri GeonetryType
m shapeLi st As New Col | ection
m shapeDi st As Doubl e

ok %k Ok ok X % ok ok ok ok ¥ F ok o ¥ F ok * F ok oy *

Di
Di
Di
Di
Di

$ ok ok R kR 3k b b % % ok Sk ok 3k %k ¥ ¥ ¥ F 3 F

*

Public Sub GetTextFont(pnmxDoc As | MDocument, _
fontStrg, currSize, defTFINC, def PMODE, def COLOR)
*

PURPCSE: TO DETERM NE THE CURRENT ACTIVE TEXT FONT | N ARCVAP
G VEN: pMDoc = current active docunent

RETURN: fontStrg name of current active font

' *

' * *
' * *
' * *
' * *
' * *
tox currSize font size *
tox def TFINC = font style (1 = normal, 2 = italic) *
tox def PMODE = font style (1 = nornmal, 3 = bold) *
v def COLOR = font color, RGE color index value *
' * *
' * Dim pMDoc As | MkDocunent *
" * DimfontStrg As String *
"' * DimcurrSize As Doubl e *
" * Dim def TFINC, def PMODE As I nteger *
" * Dim def COLOR As Long *
' * *

Appendix D Listing of Avenue Wraps™ D-99

Public Sub GetTextRect(pTextEl ement As |TextEl enent, _
pScreenDi splay As | ScreenDi spl ay,
X1, Y1, aAngle, awWdth, aHeight)

PURPCSE: TO GET THE ANGLE, HEIGHT AND WDTH OF A TEXT ELEMENT
G VEN: pText El enent = text element representing the text
pScreenDi splay = display which text elenent appears in
RETURN: x1,yl = low left corner coordinates of text
aAngl e = text angle (degrees)
aWdth text wdth (along the text angle)

aHei ght = text height (perpendicular to angle)

NOTE: The attributes passed passed back reflect those of an

inclined, not an orthogonal, enclosing rectangle that
circunscribes the text elenent

Di m pText El enent As | Text El enent
Di m pScreenDi splay As |ScreenbDi spl ay
Dim x1, yl, aAngle, awWdth, aHeight As Double

Bk ok K ok % ox K ok * k% k% ox F g ¥

I R R R R I

*

Public Sub HDBbuild(instruct, Heading, LabellList, Defaultlnfo,
Typeli st, col mList, nRows, Userlnfo)

PURPGCSE: BU LD A CUSTOM ZABLE HORI ZONTAL DI ALOG BOX

' * *
' * *
' * *
" * G VEN i nstruct = nessage box instruction *
' Headi ng = message box heading (title) *
o | abel Li st = list of colum labels to be displayed *
o defaultinfo = list of default values for each colum *
o t ypeli st = list of item data types for each colum *
o 1 = data line, 2 = conbo box *
b col mLi st = list of colum w dths *
' nRows = nunber of rows in the dialog box *
' * *
b RETURN: user|nfo = list of user responses for data itens *
' * *
" * Diminstruct, Heading As String *
' * DimlabellList As New Collection *
' * Dimdefaultinfo As New Coll ection *
' * DimtypeList As New Coll ection *
' * DimcolmList As New Collection *
' * DimnRows As |nteger *
' * Dimuserinfo As New Collection *
' *

*

Public Sub HDBbuildil(instruct, Heading, LabellList, defaultlnfo, _
typelList, indxList, strtlndex, col mList, nRows,
user | nf o)

or the index position into a conbo box
data type denoting the default, values
start at 1 for the index position, enter
NULL to use the global colum val ue,
defaultinfo, for data line data types

strtl ndex = pointer into indxList where to begin
extracting data, starting at 1

col mLi st = list of colum w dths

' * *
b PURPOSE: BU LD A CUSTOM ZABLE HORI ZONTAL DI ALOG BOX WTH THE *
v ABI LI TY TO SPECI FY DEFAULT VALUES FOR EACH COLUWN ON *
v EACH ROW *
' * *
" * G VEN i nstruct = nessage box instruction *
' Headi ng = message box heading (title) *
o | abel Li st = list of colum labels to be displayed *
o defaultinfo = list of default values for each colum *
o typeli st = list of item data types for each colum *
o 1 = data line, 2 = conbo box *
o i ndxLi st = default value for data line data types *
' * *
' * *
' * *
' * *
' * *
' * *
' * *
' * *

D-100 Avenue Wraps

nRows = nunber of rows in the dialog box
RETURN: userlnfo = list of user responses for data itens
NOTE: (a) The indxList list is a sequential collection whose

value is either: (1) the index position into a
conbo box data type for the default value or is
(2) the default value for a data line data type.
If the data type at a position is a data line and
the global colum default value (defaultlinfo) is
to be used, enter NULL. The size of indxList is
equal to the total nunmber of rows to be displayed
times the nunber of colums
Structure of indxList is:

Item 1: default value or index for colum 1, row 1
Item 2: default value or index for colum 2, row 1
Item 3: default value or index for colum 3, row 1
Item 4: default value or index for colum 1, row 2
Item 5: default value or index for colum 2, row 2
Item 6: default value or index for colum 3, row 2
Item 7: default value or index for colum 1, row 3
Item 8: default value or index for colum 2, row 3
Item 9: default value or index for colum 3, row 3

(b) strtindex is used when nultiple forms are to be
shown one after the other, if only one formis
desired strtlindex is 1, otherwi se, strtlndex will
denote the starting index into indxList where data

is to be extracted

I T T I R I T

ok % K ok ok F ox FTT Ok kK o X ok k % KT K ok k x K ok F ok FTT ok ok K ok F F Ok k% Ok K K ok ok ok ok k ok ok K K ok K ok F F Ok % ¥ ok ok * * * x * x ¥ *

Dim instruct, Heading As String

Di m | abel List As New Col | ection

Di m defaultInfo As New Col | ection

Di m typeList As New Coll ection

Di m i ndxLi st As New Col | ection

Dim strtlndex As Long

Di m col mLi st As New Col | ection

Di m nRows As | nteger

Di m userinfo As New Col | ection
Public Function icasinan(ANGLEX) As Double
0 *
' PURPOSE: COWPUTE THE ARCSIN OF A VALUE *
0 *
' G VEN: angl eX = sin of an angle in radians *
' *
' RETURN: icasinan = angle in radians whose sin is angleX *
0 *
' Di m angl eX, icasinan As Double *
0 *
Public Function icatan(D) As Double
0 *
' PURPOSE: COWPUTE THE ARC TANGENT OF A NUMBER *
' *
' G VEN: D = a nunber *
0 *
' RETURN: icatan = arc tangent of a nunber in radians *
' *
' Dim D, icatan As Double *
' *
Public Function iccondis(X1l, Y1, X2, Y2) As Double
0 *
' PURPCSE: TO COWPUTE THE DI STANCE BETWEEN TWO PO NTS *
0 *
' G VEN: X1, Y1 = coordinates of the first point *
' X2, Y2 = coordi nates of the second point *
0 *
' RETURN: iccondis = distance between the two points *
0 *
0 *

Dim X1, Y1, X2, Y2, iccondis As Double

Appendix D Listing of Avenue Wraps™ D-101

TE— *
Public Sub icconppt(XCORD, YCORD, X2, Y2, XCRD2, YCRD2, noFnd)

T— *
b PURPOSE: TO CHECK IF A PONT IS WTH N A TOLERANCE, THAT VAR ES *
v BASED UPON THE DI SPLAY OF THE VIEW OF ANOTHER PO NT *
' * *
' * G VEN XCORD, YCORD = coordinates of point to be checked *
b X2, Y2 = coordi nates of the base point *
' * *
' * RETURN: XCRD2, YCRD2 = input values if NOFND = 0O *
b = X2,Y2 values if NOFND = 1 *
o NOFND = 0 : no match was found *
b =1 : match was found within the point *
v shappi ng tol erance. *
TE— *
" * Dim XCORD, YCORD, X2, Y2, XCRD2, YCRD2 As Doubl e *
" * Dim NOFND As |nteger *
' * *
Public Function icdegrad(angle) As Double

TE— *
' * PURPOSE: TO CONVERT FROM DEGREES TO RADI ANS *
T— *
" * G VEN ANGLE = angle in degrees (decimal) *
T— *
' * RETURN: icdegrad = angle in radians *
' * *
" * Dim ANGLE As Doubl e *
' * Dimicdegrad As Double *
T— *
Public Sub icforce(PTN1, PTEl, PTN2, PTE2, D, AZ)

T *
' * PURPCSE: |INVERSE FROM PO NT 1 TO PO NT 2 *
T— *
' * G VEN PTN1, PTEL = north-east coordinates of point 1 *
tox PTN2, PTE2 = north-east coordinates of point 2 *
T— *
' * RETURN: D = distance from point 1 to point 2 *
' az = azimuth (radians) frompoint 1 to 2 *
' * *
" * Dim PTN1, PTEl, PTN2, PTE2, D, AZ As Double *
T— *
Public Function icmakdir(Xl, VY1, X2, Y2) As Double

' * *
' * PURPCSE: COWPUTE THE CARTESI AN DI RECTION OF TWO PO NTS *
T— *
" * G4 VEN X1, Y1l = coordinates of the first point *
' X2, Y2 = coordi nates of the second point *
' * *
b RETURN: icmakdir = direction of the two points in radians *
' * *
" * Dim X1, Y1, X2, Y2, icmakdir As Double *
T— *
Public Function icraddeg(ANGLE) As Double

T *
' * PURPOSE: TO CONVERT FROM RADI ANS TO DEGREES *
T— *
' * G VEN ANGLE = angle in radians *
T— *
' * RETURN: icraddeg = angle in degrees (decimal) *
' * *
" * Dim ANGLE As Doubl e *
' * Dimicraddeg As Double *
' * *
Public Sub LoadVBAcode()

TR— *
b PURPCSE: LOAD VBA COWVPONENTS FROM A DI RECTORY |INTO THE CURRENT *
v ACTI VE PRQIECT *
T— *
' * dVEN not hi ng *

D-102 Avenue Wraps

L *
' * RETURN: not hi ng *
TE— *
tox NOTE: (a) The directory is a hardcoded path stored in aD R *
b (b) The Avenue Waps: avGetWrkDir, *
tox avLi stFiles, *
tox avSet WrkDir, and *
tox Createli st *
o must appear in the project file in order for this *
o macro to execute *
TE— *
Public Function MakeTextEl ement(sText, DX, DY, dAngle, _

pText Synbol As | Text Synbol) As | Text El ement
' * *
' * PURPOCSE: TO CREATE A TEXT ELEMENT *
' * *
' * G VEN sText = text string to appear *
o dX, dY = low left corner coordinates *
tox dAngl e = text angle of inclination (degrees) *
o pText Synbol = text synbol reflecting font, size *
' and col or *
TR— *
o RETURN: MakeText El ement = text elenent representing the text *
TR— *
' * DimsText As String *
' * DimdX dY, dAngle As Double *
" * Dim pText Synbol As | Text Synbol *
' * Dim MakeText El ement As | Text El enent *
TR— *
Public Function MakeTextSynbol (strFont, dFontSize, _

iltalic, iBold, iColor) As I|TextSynbol

TR— *
' * PURPCSE: TO CREATE A TEXT SYMBOL *
TR— *
' * G VEN st r Font = text font *
tox dFont Si ze = font size *
tox iltalic = font style (1 = nornal, 2 = italic) *
' i Bol d = font style (1 = normal, 3 = bold) *
b i Col or = RGB col or index value *
' * *
o RETURN: MakeText Symbol = text synbol representing the text *
' * *
" * DimstrFont As String *
' * DimdFontSize As Double *
"' * Dimiltalic, iBold As Integer *
" * DimiColor As Long *
' * Dim MakeText Synbol As | Text Synbol *
TR— *
Public Sub RunProgress(xyzRec, totRecs, aMessage)
' * *
' PURPCSE: Initialize, report on, and terminate the reporting of *
tox the progress for a processing operation. *
' * *
' * G VEN xyzRec = the current unit of neasure of progress *
' = 0: initiate the progress report phase *
X > 0: report on the progress *
tox < 0: termnate the progress report phase *
o totRecs = the total unit of measure of progress *
b aMessage = identification of the progress reporting *
TR— *
' * RETURN: not hi ng *
' * *
b NOTE: The progress bar can appear in one of tw forms, the *
o first is when no stop button is displayed. In this *
b form the progress bar and nmessage appear in the status *
b bar area and renmin visible until the progress bar is *
b termnated. In the second form the progress bar will *
o appear in the mddle of the display in a dialog box *
b containing the cancel button. Selecting the cancel *

Appendix D Listing of Avenue Wraps™ D-103

button will set the global variable ugpProCancel to be
TRUE. By testing the value of ugpProCancel, the user

can detect if the operation should be canceled or not.
In addition, the ugpProDesc variable can be used to

di splay additional information about the operation.

Di m xyzRec, totRecs As Long
Di m aMessage As Vari ant

L
* % ok ok ok X X * oF

Public Sub SetViewSnapTol (theView, xP, yP, _
viewRect, thePoint, difxxx, difzzz, difww)

PURPGCSE: SCRIPT TO SET THE SNAP TOLERANCE FOR THE CURRENT VI EW

G VEN: theView = the current active view
xP = x coordinate of given point
yP = y coordinate of given point
RETURN: viewRect = the width of the current visible display
thePoint = point in the projected coordinate system
will be xP,yP if no projection applied, if
a projection is applied will be different
from xP, yP
di f xxx = tolerance as a percentage of the view width
based upon user-defined value for ugsnapTol
difzzz = snmaller tolerance (difxxx * 0.1)
di fww = tolerance which will be:

(a) the same as difxxx if the tolerance is
defined as a percentage
(ugsnapTol Mode = "P"), or

(b) equal to the absolute tol erance val ue
(ugsnapTol), which is converted into
the projected environnent, if the
tolerance is defined to be absolute
(ugsnapTol Mode = "A")

theView As Vari ant

xP, yP As Doubl e

m vi ewRect, difxxx, difzzz, difww As Double
m t hePoi nt As | Poi nt

m
m

F ok ok ok kX 3k ok ok ¥ K X sk ok ok ok ok F ok ok % ox ¥ X ok ok ¥ 4 *

Di
Di
Di
Di

I T T T T e

*

Public Sub ShapeProjectSHP(theFeature As |Feature,
t heShape As | Geonetry,
i prode, _
t heNewFeature As | Feature, _
t heNewGeoretry As | Geonetry)

PURPCSE: SCRIPT TO ALTER A SHAPE BASED UPON THE VI EW PRQJECTI ON

G VEN: t heFeature = the feature to be projected
t heShape = the shape to be projected
i prode = the node of operation (see bel ow)
0 : Get the geodetic projection of
t heShape
1 : Get the geodetic unprojection of
t heShape
-1 : Check if a special feature type
is to be generated
10 : Check if a special feature type
is to be generated and convert
the given feature accordingly
11 : Convert PolyLine into PolyLi neM
12 : Convert PolyLine into PolyLinez
13 : Convert Pol ygon into PolygonM
14 : Convert Pol ygon into PolygonZ
15 : Convert Point into PointM
16 : Convert Point into PointZ
17 : Convert Point into MiltiPointM
18 : Convert Point into MiltiPointz

® ok kK ok ok ok ok ko ok ko Ok kX ok ok ok ok F oy *
$ ok ok ok R % % ok ok k% 3k 3k 3k ¥ ¥ k% ok Ok Ok F

D-104 Avenue Wraps

RETURN: theNewFeature = the new feature as projected
t heNewGeonetry = the new shape as projected

Di m theFeature As |Feature
Di m t heShape As | Geonetry
Di m i pnrode As |nteger

Dim theNewFeature As |Feature, theNewGeonetry As | Ceonetry

%k Ok Ok F % % F

Public Sub ShapeProjectVAL(theVal ue, ipnpde, theNewval ue)

PURPGCSE: CONVERT A VALUE FROM DI STANCE UNITS INTO MAP UNITS OR
MAP UNI TS I NTO DI STANCE UNI TS

G VEN t heval ue = the value to be converted
i prode = the node of operation (see bel ow)
2 . Convert a Distance value from
Di stance Units into Map Units
3 : Convert a Distance value from
Map Units into Distance Units
4 : Convert an Area value from
Map Units into Distance Units
5 : Convert an Area value from

Di stance Units into Map Units

92 : Convert a Distance value from
Di stance Units into Map Units
like ipnbde = 2 but will ignore the
projection that is assigned to the
view, as such, the result will be
in decinal degrees, if the view has
no projection it operates just like

i prode = 2

RETURN: t heNewval ue = the converted val ue

Dim theValue As Variant, ipnode As |nteger
Di m t heNewval ue As Vari ant

¥ ok ok Ok ok Rk ok ok ok ok ok ok F ok ok kK ok ok K ok ok F F ok yx KTk x ¥ ok * F % % *F

Sk kR Rk 3k ok ok ok %k ok k k¥ ¥ 3k 3k Ok Ok Ok % % ok Ok Ok F

Public Sub SortFourArrays(arrayl, array2, array3, array4, aMssg,
anCOr der)

PURPCSE: SCRIPT TO SORT UP TO FOUR DI FFERENT ARRAYS, SORTI NG
THE OTHER ARRAYS BASED UPON THE SORT OF THE FI RST ONE

G VEN: arrayl = first array of itenms to be sorted
array2 = second array of items to be sorted
array3 = third array of items to be sorted
array4 = fourth array of items to be sorted
aMssg = progress bar nessage
anOrder = the sort order as a Bool ean

True = ascending, False = Descending
RETURN: not hi ng

NOTE: (a) The order of the arrays passed in are changed by
this script to reflect the effects of the sort
(b) If only one array is to be sorted the array,
array2, array3, array4 can be passed in as NULL
(c) If NULL is specified for aMssg, no progress bar
wi Il be displayed
(d) The arrays can contain string or nuneric data but
no objects
(e) Al elements in arrayl will be sorted, as well as,
array2, array3, and array4, if specified

Dim arrayl(), array2(), array3(), array4()
Dim aMssg As Variant, anOrder As Bool ean

¥ ok ok ¥ ok o k% F b ¥ ok ok % K F F K ok F * ok F * F % x *
* ok ok Kk ok ok ok ok ok K ok ok K ok ok ok ok ok ok K ok ok ok Kk ok F *

Appendix D Listing of Avenue Wraps™ D-105

Public Sub SortTwoArrays(arrayl, array2, aMssg, anOrder)

*

PURPCSE: SCRIPT TO SORT UP TO TWO DI FFERENT ARRAYS, SORTING THE
SECOND ARRAY BASED UPON THE SORT OF THE FI RST ARRAY

G VEN: arrayl = first array of itenms to be sorted
array2 = second array of items to be sorted
aMssg progress bar nessage

anOr der the sort order as a Bool ean

True = ascending, False = Descending
RETURN: not hi ng

NOTE: (a) The order of the arrays passed in are changed by

this script to reflect the effects of the sort

(b) If only one array is to be sorted the array,
array2 can be passed in as NULL

(c) If NULL is specified for aMssg, no progress bar
wi Il be displayed

(d) The arrays can contain string or nuneric data but
no objects

(e) Al elements in arrayl will be sorted, as well as,
array2, if specified

Dim arrayl(), array2()
Dim aMssg As Variant, anOrder As Bool ean

I Tk N N

Pu

ic Sub SortTwoLists(listl, list2, aMsg, anOrder)

PURPGCSE: SCRIPT TO SORT UP TO TWO DI FFERENT LI STS, SORTING THE
SECOND LI ST BASED UPON THE SORT OF THE FIRST LIST

G VEN: listl = first list of itens to be sorted
list2 = second list of itenms to be sorted
aMssg progress bar nessage

anOr der the sort order as a Bool ean

True = ascending, False = Descending
RETURN: not hi ng

NOTE: (a) The order of the lists passed in are changed by
this script to reflect the effects of the sort
(b) If only one list is to be sorted the collection
list2 can be an enpty list or passed in as NOTH NG
(c) If NULL is specified for aMssg, no progress bar
wi Il be displayed

Dim listl As New Collection, list2 As New Collection
Dim aMssg As Variant, anOrder As Bool ean

ok Ok Ok %k % ok ok K X 2k ok ok ok ok ok ko oy KT Ok ok k kX oy 3k ok K ok Ok 3k 3k o Ok Ok Ok X ok kX % K %y

I T R I I R RN RN

*

Public Sub VCBbuild(instruct, Heading, LabellList, defaultlnfo,
typeLi st, userlnfo)

PURPCSE: BUI LD A CUSTOM ZABLE VERTI CAL CHO CE DI ALOG BOX
G VEN: i nstruct = nessage box instruction
Headi ng = message box heading (title)
| abel Li st = list of labels for data items (not used,

can be NOTH NG or an enpty |ist

defaultlnfo list of choices (options) user can pick

t ypelLi st type of data item to be displayed (not
used, can be NOTH NG or an enpty list)

RETURN: userlnfo = list containing the selected option
NOTE: Once the user selects an option from the nessage box,

the message box is closed and the option that was
selected is passed back. If the nessage box is closed
by the user, userinfo is passed back as an enpty I|ist

% ok k% K % Ok K ok % F % F * Ok x F
L I I 2 R

D-106 Avenue Wraps

' * *
" * Diminstruct, Heading As String *
tox Dim | abelList As New Collection, defaultlinfo As New Collection *
' * DimtypeList As New Coll ection *
' * Dimuserinfo As New Collection *
' * *
Public Sub VDBbuild(instruct, Heading, LabellList, defaultlnfo,
typeLi st, userlnfo)
' * *
' * PURPCSE: BU LD A CUSTOM ZABLE VERTI CAL DI ALOG BOX *
' * *
" * G VEN i nstruct = nessage box instruction *
b Headi ng = message box heading (title) *
b | abel Li st = list of labels for data itens *
o defaultinfo = list of default values for data itemns *
tox t ypeli st = type of data item to be displayed *
o 1 = data line, 2 = conbo box, *
o 3 = text box with nultiselect *
b RETURN: userlnfo = list of user responses for data itens *
' * *
' * NOTE: Only use a text box control when a single data item *
b is to be displayed such as done with avMsgBoxMiltilList *
" * Diminstruct, Heading As String *
tox Dim | abelList As New Collection, defaultinfo As New Collection *
' * DimtypeList As New Coll ection *
' * Dimuserinfo As New Collection *
' * *
Public Sub VDBbuild2(instruct, Heading, |abellList, defaultlnfo,
typeLi st, userlnfo)

' * *
b PURPOSE: BU LD A CUSTOM ZABLE VERTICAL DI ALOG BOX WTH A BACK *
v BUTTON *
' * *
" * G VEN i nstruct = nessage box instruction *
' Headi ng = message box heading (title) *
b | abel Li st = list of labels for data itens *
o defaultinfo = list of default values for data itemns *
tox t ypeli st = type of data item to be displayed *
o 1 = data line, 2 = conbo box *
' * *
b RETURN: userlnfo = list of user responses for data itens *
' * *
" * Diminstruct, Heading As String *
tox Dim | abelList As New Collection, defaultinfo As New Collection *
' * DimtypeList As New Coll ection *
' * Dimuserinfo As New Collection *

